CONTENTS

Preface xiii

Acknowledgments and About the Author xvi

Chapter 1	Energy: Conceptual Foundation and the Laws That Govern Its
	Transformation 1
	Framework: Setting the Context 2
	Road Map 9
	Emergence of Energy as a Scientific Concept 9
	 Energy, Work, and Newton's Laws 12
	 Conservation of Energy: Tracking the Flow of Energy 15
	 Energy at the Molecular Level: Microscopic and Macroscopic Forms of Energy 18
	 Exchange of Kinetic and Potential Energy on a Surface 20
	The Mechanical Equivalent of Heat 22
	 Heat and Temperature at the Molecular Level 26
	 Energy Transformations: The Central Role of Electromagnetic Radiation 30
	 Energy and Power: A Very Important Distinction 38
Chapter/8	Summary of the Core Concepts 38
	• Case Studies 43
Chapter 2	Atomic and Molecular Structure: Energy from Chemical Bonds 63
	Framework: Setting the Context 63
	Road Map 71
	Atomic View of Matter 71
	Discovery of the Electron 73
	Discovery of the Atomic Nucleus 75
	 Atomic Number, Mass Number, and Atomic Symbol 78
	• Isotopes 79
	Molecular Structure 79
	Chemical Formulas 83
	Chemical Formulas and Molecular Models 83
	• Stoichiometry 86
	Avogadro's Number 88
	Molar Mass 88
	Balancing Chemical Equations 89
	Oxidation-Reduction Reactions 93
	 Oxidation and Reduction in Combustion Reactions 95
	 Redox Reactions where Oxygen Is Not Involved 96
	• Summary Concepts 97
	Case Studies 101
Chapter 3	Thermochemistry: Development of the First Law of Thermodynamics 129
	Framework: Setting the Context 129
	Road Map 133
	 Development of the First Law of Thermodynamics 134
	The Concept of Internal Energy 138
	State Variables in Thermodynamics 139
	 Heat and Heat Capacity: How Thermal Energy Transfer (Heat) Is Calculated from Temperature
	Change 146
	• Enthalpy 150
	Standard Enthalpies of Formation 152
	Hess's Law 154
	 Pressure-Volume Work and the First Law 156
	 Isochoric, Isobaric, and Isothermal Processes 160
	Adiabatic Processes 167
	 Phase Changes and the Thermodynamics of Melting, Vaporization, and Sublimation 173
	Summary Concepts 178
	Case Studies 183

Chapter 4 Entropy and the Second Law of Thermodynamics 203

- Framework: Setting the Context 203
- Road Map 211
- Determination of Probability at the Molecular Level 212
- Entropy 216
- Boltzmann and the Microscopic Formulation of Entropy 217
- Qualitative Prediction of Entropy Change: Establishing the Sign of ΔS 221
- Quantitative Treatment of Entropy: Calculating ΔS for a System 225
- Joining the Macroscopic and Microscopic: Calculation of Entropy Change, ΔS 230
- The Second Law of Thermodynamics 231
- Gibbs Free Energy 232
- Gibbs Free Energy and Spontaneous Change 233
- Absolute Value for Entropy: The Third Law of Thermodynamics 236
- Calculation of Entropy Change for a Chemical Reaction 237
- Calculation of Gibbs Free Energy for a Reaction 239
- Summary Concepts 242
- Case Studies 247

Chapter 5 Equilibria and Free Energy 257

- Framework: Setting the Context 257
- Road Map 263
- The Concept of Chemical Equilibrium 264
- The Equilibrium Constant 265
- Determination of a Generalized Expression for K_c from the Specific to the General 269
- Manipulation of the Equilibrium Constant 270
- Converting between Concentration Units and Pressure Units 273
- Stressed Equilibria 275
- · The Principle of Le Chatelier 281
- Quantitative Determination of Concentrations Following an Impressed Stress on a System at Equilibrium 282
- Equilibrium Problems Involving Multiple Steps 284
- Equilibrium Constants, Spontaneous Processes, and Gibbs Free Energy 286
- Gibbs Free Energy Under Non-standard Conditions 289
- ΔG° at Temperatures Other than 298 K 292
- Thermodynamic Equilibrium Constant: Activities 295
- Assessing Spontaneity for Non-standard Conditions 295
- ΔG° and K_{eq} as Functions of Temperature 296
- Gibbs Free Energy: The Maximum Amount of Work That Can Be Extracted from a Chemical Process 298
- Summary Concepts 299
- Case Studies 305

Chapter 6 Equilibria in Solution: Acid-Base Control of Life Systems 315

- Framework: Setting the Context 315
- Road Map 323
- Introduction 324
- The Bonding Structure of Water 324
- Theory of Acid-Base Reactions 326
- Equilibria and Free Energy in Acidic Solution 330
- Solutions That Are Basic: Manipulation of pOH and p K_3 333
- Neutralization Reactions: The Addition of an Acid to a Base 335
- Strong Acid Reacting with a Strong Base 336
- Strong Base Reacting with a Weak Acid 338
- Buffer Solutions 344
- Titration Reactions 347
- Titration of a Weak Acid by a Strong Base 349
- Titration of a Weak Base by a Strong Acid 351
- Summary Concepts 353
- Case Studies 359

Chapter 7 Electrochemistry: The Union of Gibbs Free Energy, Electron Flow, and Chemical Transformation 379

- Framework: Setting the Context 379
- Road Map 386
- Free Energy, Electron Flow, and Electrochemistry 387
- The Galvanic or Voltaic Cell 392
- The Half-Cell Reactions 395
- The Standard Hydrogen Electrode 396
- Calculation of the Cell Potential 399
- Active vs. Inactive Electrodes 405
- Notation for an Electrochemical Cell: A Shorthand Technique 407
- Maximum Work from a Cell: Gibbs Free Energy 408
- Link between K_{eq} , G° , and E°_{cell} 411
- Death of an Electrochemical Cell: The Nernst Equation 414
- The Master Diagram 416
- Non-spontaneous Reactions: Driving the Electrochemical Cell Uphill 418
- Corrosion: A Redox Reaction That Causes Problems 422
- Summary Concepts 425
- Case Studies 427

Chapter 8 Quantum Mechanics, Wave-Particle Duality, and the Single Electron Atom 453

- Framework: Setting the Context 453
- Road Map 459
- Waves and Particles: From Separation to Union 460
- Einstein, the Photon, and the Union of Planck and the Photoelectric Effect 460
- Momentum of the Photon 466
- Spectroscopy and the Study of Light Emission from Atoms 468
- Bohr Model of the Hydrogen Atom 469
- · The de Broglie Wavelength of the Electron 477
- Nature of Waves and the Wave Equation 479
- Particle-in-a-Box: An Important Example 483
- Uncertainty in the Position of the Electron in the Square Well Potential 488
- The Schrödinger Equation 490
- The Hydrogen Atom 493
- Energy Levels of the Hydrogen Atom 495
- Quantum Numbers That Define the Radial and Angular Solutions to the Schrödinger Equation 497
- Physical Interpretation of the Schrödinger Wavefunction $\psi_{n,m}(\mathbf{r},\theta,\phi)$ 506
- Summary Concepts 509
- Case Studies 515

Chapter 9 Quantum Mechanics of Multielectron Systems and the Link Between Orbital Structure and Chemical Reactivity 527

- Framework: Setting the Context 528
- Road Map 533
- Multielectron Atoms 534
- Penetration, Shielding, and Effective Nuclear Charge, Z_{eff} 537
- Building Up the Periodic Table 540
- Building Up Period 3 542
- Building Up Period 4 544
- Organization of the Periodic Table 546
- Joining Periodic Behavior to Chemical Reactivity 548
- Electron Shielding and Penetration 549
- Periodic Trends in Atomic Size 551
- Periodic Trends in Ionization Energy 554
 - Periodic Trends in Electron Affinity 557
 - Linking Periodic Trends in IE and EA 559
 - Electronegativity: Unify the Concepts of Ionization Energy and Electron Affinity 559
 - Trends in the Chemical Behavior of Metals 560
 - Summary Concepts 561
 - Case Studies 565

Chapter 10 Theories of Molecular Bonding I: Valence Electron Configuration, Electron Sharing, and Prediction of Molecular Shape 585

- Framework: Setting the Context 586
- Road Map 592
- The Structure of the Molecular Bond 593
- Types of Chemical Bonds 599
- Representation of Valence Electrons in a Chemical Bond 602
- Lewis Structures for Ionic Bonds 604
- Lattice Energy and the Formation of Ionic Crystals 606
- Lewis Structures and Covalent Bonding 607
- Lewis Structures for Covalent Bonds 607
- Lewis Structures for Single Covalent Bonds: Diatomics 608
- Lewis Structures for Single Covalent Bonds: Polyatomic Molecules 609
- Lewis Structures and Bonding Character 611
- Constructing Lewis Structures For Polyatomic Molecular Compounds 612
- Method of Formal Charge 617
- Limitation to the Lewis Theory 618
- Determination of Molecular Shapes: Valence Shell Electron Pair Repulsion Theory 620
- Shapes of Molecules: Bond Lengths and Bond Energies 627
- Summary Concepts 630
- Case Studies 635

Chapter 11 Theories of Molecular Bonding II: Quantum Mechanical Based Theories of Covalent Bonding 661

- Framework: Setting the Context 661
- Road Map 669
- Valence Bond Theory: Orbital Overlap and the Name of the Chemical Bond 670
- Molecular Shape and the Concept of Bond Hybridization 678
- sp³ Hybridization and the Structure of Methane 680
- sp² Hybridization and the Formation of σ and π Double Bonds 682
- sp Hybridization and the Formation of Triple Bonds 684
- sp³d and sp³d² Hybrid Orbitals: Trigonal Bipyramidal and Octahedral Geometry 688
- Molecular Orbital Theory and Electron Delocalization 691
- Bonding and Antibonding Orbitals 695
- Molecular Orbital Structure of Molecular Oxygen 699
- Molecular Orbital Structure and the Potential Energy Structure 701
- Molecular Orbital Structure of Homonuclear Diatomics 705
- Molecular Orbital Structure of Heteronuclear Molecules 707
- Molecular Orbital Theory Applied to Benzene: The Central Role of Delocalization 710
- Summary Concepts 715
- Case Studies 719

Chapter 12 Kinetics: The Principles That Govern the Rate at Which Chemical Reactions Occur 743

- Framework: Setting the Context 743
- Road Map 755
- Kinetics 756
- Chemical Reactions and Molecular Collisions 757
- The Overall Reaction vs. the "Elementary Reaction" 760
- Determination of the Rate of a Chemical Reaction 761
- Determination of the Reaction Rate Constant 763
- Reaction Rate Order: Determination of the Effect of Concentration on Reaction Rate 765
- The Behavior of Zero-Order, First-Order, Second-Order, and Third-Order Kinetics 768
- Integration of the Rate Law: Defining the Concentration as a Function of Time 772
- Steady State Approximation 780
- Arrhenius Expression for Temperature Dependence 784
- Relating Molecular Motion to the Arrhenius Expression 785
- Manipulation of the Arrhenius Expression 788
- Summary Concepts 789
- Case Studies 795

Chapter 13 Nuclear Chemistry: Energy, Reactors, Imaging, and Radiocarbon Dating 807

- Framework: Setting the Context 807
- Road Map 821
- Elementary Nuclear Particles and Reactions 822
- Nuclear Reactions: Fusion 823
- Nuclear Stability: Binding Energy 824
- Nuclear Reactions: Fission 826
- Radioactive Dating 828

Appendixes 831

- Appendix A: Standard Thermodynamic Values for Selected Substances 831
- Appendix B: Equilibrium Constants for Selected Substances 835
- Appendix C: Standard Electrode (Half-Cell) Potentials 841
- Appendix D: Fundamental Physical Constants, SI Unit Prefixes, Conversions, and Relationships 842
- Appendix E: The Elements (Atomic Numbers and Atomic Masses) 843
- Appendix F: Periodic Table 845

Index 847