Contents

Preface to the First Edition Preface to the Second Edition Preface to the Third Edition Preface to the Fourth Edition

ix xi xiii 3. Genesis and Migration What Determines the Number of Cells

CLE Integrating Information/DomessilSpecificus

Vill: Target Selectiden in Insidem M. Second

Cetting Broth Hoters 3 Notes The Ophiley Michiel

XV

1. Neural Induction

Development and Evolution of Neurons Early Embryology of Metazoans Derivation of Neural Tissue 2 Caenorhabditis elegans 2 Drosophila 3 Vertebrates 3 **Interactions With Neighboring Tissues in** Making Neural Tissue The Molecular Nature of the Neural Inducer 10 **Conservation of Neural Induction** 13 Interactions Among the Ectodermal Cells in Controlling Neuroblast Segregation 18 23 Summary 25 References

	What Determines the Number of Cells	Sea.
	Produced by the Progenitors?	58
	The Generation of Neurons and Glia	61
	Cerebral Cortex Histogenesis	65
	Cerebellar Cortex Histogenesis	69
107	Molecular Mechanisms of Neuronal Migration	72
	Postembryonic and Adult Neurogenesis	77
	Summary	81
	References	82
	References	02
4.	Generation of Neural Diversity	
	Invariant Lineages and Terminal Selectors:	
	The Caenorhabditis elegans Nervous	
	System	86
	Spatial and Temporal Coordinates of	00
	Determination: Drosophila Neuroblasts	89
	Asymmetric Cell Division and Asymmetric	05
	Fates: Sensory Organ Precursors	91
	Generating Complexity Through Cellular	51
	Interactions: The Drosophila Retina	95
	Specification Through Interactions With the	55
	Local Environment: The Neural Crest	99
		99
	Spatial Cues and Transcriptional	102
	Hierarchies: Spinal Motor Neurons	102
	Competence, Lineage, Stochasticity, and	100
	Feedback: The Vertebrate Retina	106
	The Cerebral Cortex	109
	Summary	and the second second
	References	115

2. Polarity and Regional Identity

The Anterior-Posterior Axis and hox 27 Genes Hox Gene Function in the Vertebrate **Nervous System** 29 **Signaling Molecules That Pattern the Anterior-Posterior Axis in Vertebrates:** 34 **Heads or Tails Organizing Centers in the Developing** 37 Brain Forebrain Development, Prosomeres, and 39 Pax Genes Dorsal-Ventral Polarity in the Neural

5. Wiring Up the Brain: Axon Navigation

The Emergence of Axons and Dendrite	es 119
Pioneer Axons	122
The Growth Cone	123
Growth Cone Cytoskeletal Dynamics	125

131

134

138

140

V

Dorsal-ventral Polarity in the Neural		Growth Cone Cytoskeletal Dynamics	
Tube	44	Mechanics, Adhesion, and the Extracellular	
Dorsal Neural Tube and Neural Crest	> 47	Matrix	1
Patterning the Cerebral Cortex	49	Cell adhesion Molecules and Labeled Lines	1
Summary	52	Repulsion	1
References	52	Gradients and Local Cues	1

vi Contents

Intermediate Targets: Arriving and Leaving Integrating Information: Context-Specific Guidance Getting From Here to There: The Optic Pathway Summary References

144

146

149

152

152

159

161

162

164

164

167

172

177

179

184

188

188

188

195

197

197

197

199

200

201

203

204

205

206

208

209

211

211

6. Target Selection

Defasciculation Target Recognition and Target Entry Slowing Down and Branching in the Target

	219
References	219
8. Synapse Formation	
The Morphology of New Synapses	228
The Pace of Synapse Addition	234
Synapse Function Begins at the Moment of	
Contact	235
The Decision to Form a Synapse	236
The Sticky Synapse	238
Differentiation of Presynaptic Terminals	240
Postsynaptic Differentiation: Receptor	
Clustering at the NMJ	242
Postsynaptic Differentiation: Receptor	
Clustering in the CNS	245
Postsynaptic Differentiation: Scaffold	
Proteins in the CNS	246
Neurotransmitter Receptor Expression	247
The Influence of Synaptic Activity	248
Maturation of Transmission and Receptor	
Isoform Transitions	251
Maturation of Transmitter Reuptake	252
Short-Term Plasticity	255
The Appearance of Synaptic	
Inhibition	256
Developing Inhibitory Synapses Can Act	
Like Excitation	256
Summary	257
References	257

Dogion
Region
Border Patrol: The Prevention of
Inappropriate Targeting
Topographic Mapping
Chemospecificity and Ephrins
The Third Dimension, Lamina-Specific
Termination
Cellular and Synaptic Targeting
Sniffing Out Targets
Shifting and Fine Tuning of Connections
Summary
Acknowledgment
References
Naturally Occurring Neuron Death

What Does Neuron Death Look Like? **Early Elimination of Progenitor Cells How Many Differentiated Neurons Die? Survival Depends on the Synaptic Target NGF: A Target-Derived Survival Factor** The Neurotrophin Family The Trk Family of Neurotrophin Receptors How Does the Neurotrophin Signal Reach the Soma? The P75 Neurotrophin Receptor Can **Initiate Cell Death Cytokines Act as Neuron Survival Factors** Hormonal Control of Neuron Survival **Cell Death Requires Protein Synthesis Intracellular Signaling Pathways That Mediate Survival Intracellular Signaling Pathways That Mediate Death Caspases: Agents of Death BCL-2** Proteins: Regulators of Programmed

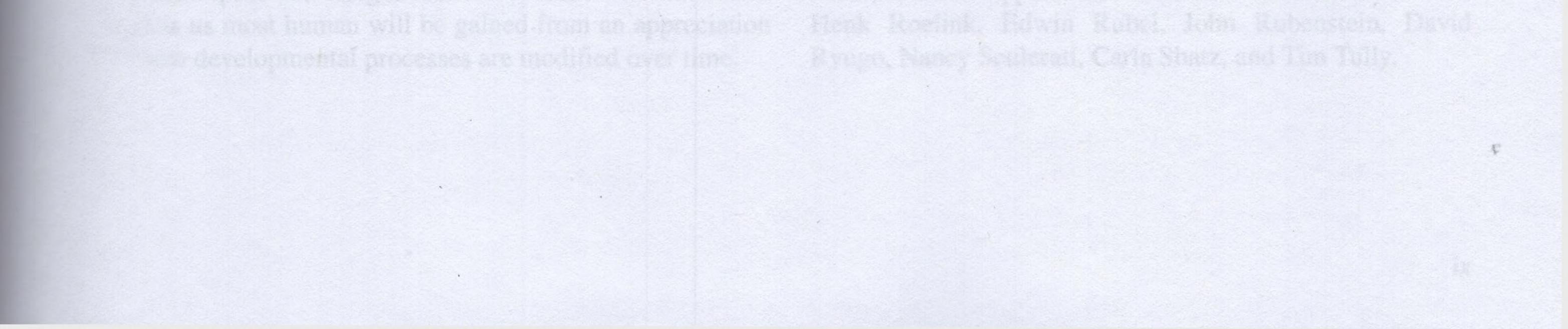
9. Refinement of Synaptic Connections **Immature Patterns of Connectivity** 269 **Functional Synapses Are Eliminated During** Development 269 **Axonal Arborizations Are Eliminated or** Refined 270 **Activity Influences Synapse Elimination** 274 **Sensory Experience Influences Synaptic** Connections 275 **Sensory Activity Influences Topographic Maps** 281 **Sensory Activity Influences the Maturation** of Coding Properties 283 **Spontaneous Activity in the Developing Nervous System** 285 **Enhanced Plasticity During Developmental Critical Periods** 288

290

290

292

BCL-2 Proteins: Regulators of ProgrammedSynaptic Inhibition Regulates ExcitatoryCell Death214Synapse RefinementRemoval of Dying Neurons215NMDA Receptors Mediate DevelopmentalSynaptic Activity Is a Trophic Signal216PlasticityA Dual-Edged Sword: Intracellular Calcium219Heterosynaptic Depression and SynapseMediates Survival and Death219Elimination


Contents vii

Long-Term Depression and Potentiation	293
The Intracellular Signals That Mediate	
Synapse Elimination	295
Calcium-Activated Second Messenger Systems	296
Activity-Dependent Refinement of	
Inhibitory Synapses	297
Homeostatic Plasticity: The More Things	
Change, the More They Stay the Same	298
Synaptic Activity Influences on Brain	
Morphology	301
Summary	302
References	303

Auditory Skills Improve Slowly	
and Asynchornously	329
Prolonged Maturation of Visual Skills	330
Slowly Developing CNS Sensory Coding	
Properties	333
Sex-Specific Behavior	335
Genetic Sex	336
Hormonal Control of Brain Gender	336
Sexual Dimorphism in the Brain	337
Singing in the Brain	338
Genetic Control of Brain Gender in Flies	339
A Genetic Influence on Brain Gender in	dents to
Vertebrates	340
Genomic Imprinting: The Ultimate	
in Parental Control	341
Hit the Ground Learning	342
Learning to Avoid Peril	344
The Emergence of Memory Consolidation	345
Skill Learning: Development Requires	
Practice	347
, Learning to Communicate	350
Neural Mechanisms That Support Vocal	one, and
Learning	350
Language	352
Summary	355
References	356
cities an undergraduate biology bobk will alter a	pe criter
olecules-and-Gene-index	365
dex	369

10. Behavioral Development

Genetic Mechanisms 311 **Epigenetic Mechanisms and Sensitive Periods** 314 **Embryonic and Juvenile Behavior** 314 **The First Movements Are Spontaneous** 316 **Interconnected Excitatory Networks Drive Spontaneous Movements** 318 **Progressive Assembly of Coordinated Sensory-Motor Circuitry** 320 **Coordinated Limb Movement in Mammals** 322 **Mapping Genes Onto Neurons** and Locomotory Circuits 324 The Role of Activity in the Emergence of **Coordinated Behavior** 325 **Beginning to Make Sense of the World** 328 M The Onset of Hearing 328 In ral tissue. Even if we chose to cover only the penes and i see sext covers each of these developmental steps, it is the anderstanding of the development of the mervous the has importance for hickogists in a larger context. Plott, Darey Kolley, Chris Kimmer, Sue McChancell, Ilona

