
Table of Contents

Preface

Section 1 - Data Parallelism

Splitting Input Data
Single-node training is too slow 4
The mismatch between data loading 
bandwidth and model training bandwidth 5
Singlemode training time on popular
datasets 6
Accelerating the training process with
data parallelism 8

Data parallelism - the
high-level bits 9

Stochastic gradient descent 13
Model synchronization 14

Hyperparameter tuning 15
Global batch size ' 16
Learning rate adjustment 16
Model synchronization schemes 17

Summary 18

Parameter Server and All-Reduce
Technical requirements 20
Parameter server architecture 21
Communication bottleneck in the 
parameter server architecture 22
Shardingthe model among parameter
servers 24

Implementing the parameter
server 26
Defining model layers 26

Defining the parameter server 27
Defining the worker 28
Passing data between the parameter
server and worker 30

Issues with the parameter
server 32
The parameter server architecture 
introduces a high coding complexity 
for practitioners



viii Table of Contents

All-Reduce architecture 34
Reduce 34
All-Reduce 36
Ring All-Reduce 37

Collective communication 40

Broadcast 40
Gather 41
All-Gather 42

Summary 43

Building a Data Parallel Training and Serving Pipeline
Technical requirements 46
The data parallel training 
pipeline in a nutshell 46
Input pre-processing 48
Input data partition 49
Data loading 50
Training 50
Model synchronization 51
Model update 52

Single-machine multi-GPUs and
multi-machine multi-GPUs 52

Single-machine multi-GPU 52
Multi-machine multi-GPU 56

Checkpointing and fault
tolerance 64
Model checkpointing 64
Load model checkpoints 65

Model evaluation and 
hyperparameter tuning 67
Model serving in data parallelism71
Summary 73

Bottlenecks and Solutions
Communication bottlenecks in 
data parallel training 76
Analyzing the communication workloads 76
Parameter server architecture 77
T h e A1I - R e d u c e a rc h i t e ct u r e 80
The inefficiency of state-of-the-art
communication schemes 83

Leveraging idle links and host
resources 85

Tree All-Reduce 85
Hybrid data transfer over PCIe and
NVLink 91

On-device memory bottlenecks 93
Recomputation and quantization 94
Recomputation 95
Quantization 98

Summary 99



Table of Contents ix

Section 2 - Model Parallelism

Splitting the Model

Technical requirements 104
Single-node training error - out 
of memory 105
Fine-tuning BERT on a single GPU 105
Trying to pack a giant model inside one 
state-of-the-art GPU 107

BERT
GPT

ELMO, BERT, and GPT 110
Basic concepts 110
RNN 114

ELMO 117

Pre-training and fine-tuning 
State-of-the-art hardware
P100,V100,and DGX-1

NVLink

A100 and DGX-2
NVSwitch

Summary

119
121

122
123
1.23
124
125
125

125

Pipeline Input and Layer Split
Vanilla model parallelism is
inefficient 128
Forward propagation 130
Backward propagation 131
GPU idle time between forward and
backward propagation 132

Pipeline input 137
Pros and cons of pipeline
parallelism 141

Advantages of pipeline parallelism 141
Disadvantages of pipeline parallelism 142

Layer split 142
Notes on intra-layer model 
parallelism 145
Summary 145



x Table of Contents

Implementing Model Parallel Training and Serving Workflows
Technical requirements 148
Wrapping up the whole model
parallelism pipeline 149
A model parallel training overview 149
Implementing a model parallel training
pipeline 150
Specifying communication protocol
among GPUs 153
Model parallel serving 158

Fine-tuning transformers 162
Hyperparameter tuning in
model parallelism 163
Balancing the workload among GPUs 163
Enabling/disabling pipeline parallelism 164

NLP model serving
Summary

164

Achieving Higher Throughput and Lower Latency
Technical requirements 169
Freezing layers 169
Freezing layers during forward
propagation 171
Reducing computation cost during
forward propagation 173
Freezing layers during backward
propagation 174

Exploring memory and
sto rage reso u rces 177
Understanding model
decomposition and distillation 180
Model decomposition 180
Model distillation 183

Reducing bits in hardware 184
Summary 184

Section 3 - Advanced Parallelism Paradigms

A Hybrid of Data and Model Parallelism
Technical requirements 189
Case study of Megatron-LM 189
Layer split for model parallelism 189
Row-wise trial-and-error approach 192
Column-wise trial-and-error approach 196

Cross-machine for data parallelism 200

Implementation of
Megatron-LM 201
Case study of
Mesh-TensorFlow 203



Table of Contents xi

Implementation of
Mesh-TensorFlow

Pros and cons of Megatron-LM 
204 and Mesh-TensorFlow 204

Summary 205

Federated Learning and Edge Devices
Technical requirements 209
Sharing knowledge without 
sharing data 209
Recapping the traditional data parallel 
model training paradigm 210
No input sharing among workers 211

Communicating gradients for
collaborative learning 212

Case study: TensorFlow
Federated 217
Running edge devices with
TinyML 219
Case study: TensorFlow Lite 219
Summary 220

11
Elastic Model Training and Serving
Technical requirements 223
Introducing adaptive
model training 223
Traditional data parallel training 224
Adaptive model training in data
parallelism 226
Adaptive model training (AllReduce-
based) 226
Adaptive model training (parameter
server-based) 229

Traditional model-parallel model
training paradigm 231
Adaptive model training in model
parallelism 232

Implementing adaptive model
training in the cloud 235
Elasticity in model inference 236
Serverless 238

Summary 238



xii Table of Contents

12
Advanced Techniques for Further Speed-Ups
Technical requirements 241
Debugging and performance
analytics 241
General concepts in the
profiling results 243
Communication results analysis 245
Computation results analysis 246

Job migration and multiplexing 249
job migration 2.50
job multiplexing 251

Model training in a 
heterogeneous environment 251
Summary 252

Index
Other Books You May Enjoy


