
Contents

Contents vii

Foreword xi

Preface to the Second Edition xv

Preface to the First Edition xvii

Acknowledgments xxi

1 Building Abstractions with Procedures

1.1 The Elements of Programming 4
1.1.1 Expressions 5
1.1.2 Naming and the Environment 7
1.1.3 Evaluating Combinations 9
1.1.4 Compound Procedures 11
1.1.5 The Substitution Model for Procedure Application 13
1.1.6 Conditional Expressions and Predicates 17
1.1.7 Example: Square Roots by Newton’s Method 21
1.1.8 Procedures as Black-Box Abstractions 26

1.2 Procedures and the Processes They Generate 31
1.2.1 Linear Recursion and Iteration 32
1.2.2 Tree Recursion 37
1.2.3 Orders of Growth 42
1.2.4 Exponentiation 44
1.2.5 Greatest Common Divisors 48
1.2.6 Example: Testing for Primality 50

1.3 Formulating Abstractions with Higher-Order Procedures 56
1.3.1 Procedures as Arguments 57
1.3.2 Constructing Procedures Using Lambda 62
1.3.3 Procedures as General Methods 66
1.3.4 Procedures as Returned Values 72



viii Contents

2 Building Abstractions with Data 79

2.1 Introduction to Data Abstraction 83
2.1.1 Example: Arithmetic Operations for Rational Numbers 83
2.1.2 Abstraction Barriers 87
2.1.3 What Is Meant by Data? 90
2.1.4 Extended Exercise: Interval Arithmetic 93

2.2 Hierarchical Data and the Closure Property 97
2.2.1 Representing Sequences 99
2.2.2 Hierarchical Structures 107
2.2.3 Sequences as Conventional Interfaces 113
2.2.4 Example: A Picture Language 126

2.3 Symbolic Data 142
2.3.1 Quotation 142
2.3.2 Example: Symbolic Differentiation 145
2.3.3 Example: Representing Sets 151
2.3.4 Example: Huffman Encoding Trees 161

2.4 Multiple Representations for Abstract Data 169
2.4.1 Representations for Complex Numbers 171
2.4.2 Tagged data 175
2.4.3 Data-Directed Programming and Additivity 179

2.5 Systems with Generic Operations 187
2.5.1 Generic Arithmetic Operations 189
2.5.2 Combining Data of Different Types 193
2.5.3 Example: Symbolic Algebra 202

3 Modularity, Objects, and State 217

3.1 Assignment and Local State 218
3.1.1 Local State Variables 219
3.1.2 The Benefits of Introducing Assignment 225
3.1.3 The Costs of Introducing Assignment 229

3.2 The Environment Model of Evaluation 236
3.2.1 The Rules for Evaluation 238
3.2.2 Applying Simple Procedures 241
3.2.3 Frames as the Repository of Local State 244
3.2.4 Internal Definitions 249

3.3 Modeling with Mutable Data 251
3.3.1 Mutable List Structure 252



Contents ix

3.3.2 Representing Queues 261
3.3.3 Representing Tables 266
3.3.4 A Simulator for Digital Circuits 273
3.3.5 Propagation of Constraints 285

3.4 Concurrency: Time Is of the Essence 297
3.4.1 The Nature of Time in Concurrent Systems 298
3.4.2 Mechanisms for Controlling Concurrency 303

3.5 Streams 316
3.5.1 Streams Are Delayed Lists 317
3.5.2 Infinite Streams 326
3.5.3 Exploiting the Stream Paradigm 334
3.5.4 Streams and Delayed Evaluation 346
3.5.5 Modularity of Functional Programs and Modularity of 

Objects 352

4 Metalinguistic Abstraction 359

4.1 The Metacircular Evaluator 362
4.1.1 The Core of the Evaluator 364
4.1.2 Representing Expressions 368
4.1.3 Evaluator Data Structures 376
4.1.4 Running the Evaluator as a Program 381
4.1.5 Data as Programs 384
4.1.6 Internal Definitions 388
4.1.7 Separating Syntactic Analysis from Execution 393

4.2 Variations on a Scheme—Lazy Evaluation 398
4.2.1 Normal Order and Applicative Order 399
4.2.2 An Interpreter with Lazy Evaluation 401
4.2.3 Streams as Lazy Lists 409

4.3 Variations on a Scheme—Nondeterministic Computing 412
4.3.1 Amb and Search 414
4.3.2 Examples of Nondeterministic Programs 418
4.3.3 Implementing the Amb Evaluator 426

4.4 Logic Programming 438
4.4.1 Deductive Information Retrieval 441
4.4.2 How the Query System Works 453
4.4.3 Is Logic Programming Mathematical Logic? 462
4.4.4 Implementing the Query System 468



Contents

5 Computing with Register Machines

5.1 Designing Register Machines
5.1.1 A Language for Describing Register Machines
5.1.2 Abstraction in Machine Design
5,1.3 Subroutines
5.1.4 Using a Stack to Implement Recursion
5.1.5 Instruction Summary

5.2 A Register-Machine Simulator
5.2.1 The Machine Model
5.2.2 The Assembler
5.2.3 Generating Execution Procedures for Instructions
5.2.4 Monitoring Machine Performance

5.3 Storage Allocation and Garbage Collection
5.3.1 Memory as Vectors
5.3.2 Maintaining the Illusion of Infinite Memory

5.4 The Explicit-Control Evaluator
5.4.1 The Core of the Explicit-Control Evaluator
5.4.2 Sequence Evaluation and Tail Recursion
5.4.3 Conditionals, Assignments, and Definitions
5.4.4 Running the Evaluator <^7

5.5 Compilation
5.5.1 Structure of the Compiler
5.5.2 Compiling Expressions
5.5.3 Compiling Combinations
5.5.4 Combining Instruction Sequences
5.5.5 An Example of Compiled Code
5.5.6 Lexical Addressing
5.5.7 Interfacing Compiled Code to the Evaluator

491

492
494
499
502
506

513

520
523
530

533
534
540

547
549

560

574
581
587
591
600
603

References

List of Exercises

Index

611

619

621


