Contents

		Fitzing the Mk model to data 149	
1	A br	ief introduction to phylogenetics in R 1	
	1.1	Introduction 1	
	1.2	Preliminaries 3	
	1.3	R phylogenetics 5	
	1.4	ape and the "phylo" object in R 7	
	1.5	The internal structure of a tree in R 11	
	1.6	Reading and writing phylogenetic trees 15	
	1.7	Plotting and manipulating trees 16	
	1.8	Multiple trees in a single object 24	
	1.9	Managing trees and comparative data 25	
	1.10	A simple comparative analysis: Phylogenetic principal	
		components analysis 29	
	1.11	Practice problems 32	
2	Dhyd		
2		ogenetically independent contrasts	
	2.1		
	2.2	Phylogenetic nonindependence 30	
		Phylogenetically independent contrasts 38 What happens if we ignore the tree? 47	
	2.4	What happens if we ignore the tree: 47	
	2.5	Practice problems 58	
3	Phyl	ogenetic generalized least squares 59	
	3.1	Introduction 59	
	3.2	Statistical nonindependence of phylogenetic data 60	
	3.3	Equivalence of contrasts regression and PGLS 61	
	3.4	Assumptions of PGLS 67	
	3.5	Phylogenetic ANOVA and ANCOVA 71	
	3.6	Practice problems 74	
		Likelihood surface of a birth-death model 272	

The first continuous character avoids to no naixtinue and action and pallebula.

4.7 Other models of continuous character evolution on phylogenics 93 2.01
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting and comparing afternative continuous character models 100
4.8 Fitting afternative c

5 Multi-rate, multi-regime, and multivariate models for continuous ways and multivariate models for continuous ways and multivariate models for continuous ways and multivariate models for continuous ways.

5.2 Multi-spate speciation and extinction relations of the control of the spatial control of the control of the

4.3 Brownian motton on a phylogeny

4.5 Fitting a Brownlan model to data

5.1 Multi-rate Brownian evolution_

To Time and servity-wagendary diversification w

10.1 Introduction - 281

t 0.2 Tronger variations all variable at land

4	Modeling continuous character evolution on a phylogeny 75	
	4.1 Introduction 75	
	4.2 The Brownian motion model 75	
	4.3 Brownian motion on a phylogeny 79	
	4.4 Properties of Brownian motion 80	
	4.5 Fitting a Brownian model to data 82	
	4.6 Phylogenetic signal 90	
	4.7 Other models of continuous character evolution on phylogenies 98	
	4.8 Fitting and comparing alternative continuous character models 100	
	4.9 Practice problems 105	
5	Multi-rate, multi-regime, and multivariate models for continuous traits 107	
	5.1 Multi-rate Brownian evolution 108	
	5.2 Multi-optimum Ornstein-Uhlenbeck evolution 112	
	5.3 Multivariate Brownian evolution 122	
	5.4 Exploring evolutionary heterogeneity 129	
	5.5 Practice problems 144	
6	Modeling discrete character evolution on a phylogeny 145	
	6.1 Introduction 145	
	6.2 The Mk model 145	
	6.3 Fitting the Mk model to data 149	
	6.4 Comparing alternative discrete character models 161	
	6.5 Practice problems 165	
	1.2 Preimaries 3	
7	Other models of discrete character evolution 167	
	7.1 Introduction 167	
	7.2 Correlated binary traits 167	
	7.3 Modeling heterogeneity in the evolutionary rate for a discrete trait 177	
	7.4 Modeling rate variation using the hidden-rates model 185	
	7.5 A polymorphic trait model 201	
	7.6 The threshold model for studying discrete and continuous character traits 209	,
	7.7 Practice problems 219	
8	Reconstructing ancestral states 221	
	8.1 Introduction 221	
	8.2 Ancestral states for continuous characters 222	
	8.3 Properties of ancestral state estimation for continuous traits 228	
	8.4 Discrete characters 235	
	8.5 Joint ancestral state reconstruction 238	
	8.6 Marginal ancestral state reconstruction 241	
	8.7 Stochastic character mapping 243	
	8.8 What about parsimony? 251	
	8.9 Practice problems 254	
9	Analysis of diversification with phylogenies 255	
	9.1 Introduction 255	
	9.2 Lineage-through-time plots and the γ statistic 256	
	9.3 Estimating speciation and extinction rates from a reconstructed phylogeny 26	52
	9.4 The effect of incomplete sampling on diversification rates 269	
	9.5 Likelihood surface of a birth-death model 272	

	 9.6 Analyzing diversification using diversitree 273 9.7 Practice problems 280
10	Time- and density-dependent diversification 281 10.1 Introduction 281 10.2 Time-varying diversification 282 10.3 Fitting time-variable diversification models to data 284 10.4 Diversity-dependent diversification 300 10.5 Testing for variation in diversification rates among clades 305 10.6 Practice problems 308
11	Character-dependent diversification 309 11.1 Introduction 309 11.2 Binary-state speciation and extinction (BiSSE) model 310 11.3 Multi-state speciation and extinction (MuSSE) model 321 11.4 Hidden-state speciation and extinction (HiSSE) model 328 11.5 Quantitative-trait speciation and extinction (QuaSSE) model 344 11.6 Practice problems 354
12	Biogeography and phylogenetic community ecology 357 12.1 Introduction 357 12.2 Ancestral area reconstruction 358 12.3 Phylogenetic community ecology 370 12.4 Practice problems 382
13	Plotting phylogenies and comparative data 383 13.1 Introduction 383 13.2 Phylogenies in the R plotting environment 384 13.3 Plotting phylogenies without actually plotting them 399 13.4 Algorithms for drawing trees 401 13.5 Practice problems 412 References 413 Index 421 Index of R functions 425

Contents vii