

BRIEF CONTENTS

PART I INTRODUCTION

- 1 Life, Cell and Thermodynamics 1
- 2 Physical and Chemical Properties of Water 23

PART II BIOMOLECULES

- 3 Overview of DNA Structure, Function, and Engineering 42
- 4 Amino Acids 80
- 5 Polypeptide Analysis, Sequencing and Evolution 97
- 6 Proteins: Structure and Folding 131
- 7 Physiological Activities of Proteins 180
- 8 Saccharide Chemistry 221
- 9 Lipids, Bilayer and Membranes 245
- 10 Passive and Active Transport 293

PART III ENZYMES

- 11 Mechanisms of Enzyme Action 322
- 12 Properties of Enzymes 361
- 13 Hormones and Signal Transduction 402

PART IV METABOLISM

- 14 Bioenergetics 442
- 15 Glycolysis and the Pentose Phosphate Pathway 478
- 16 Additional Pathways in Carbohydrate Metabolism 523
- 17 The Citric Acid Cycle 558
- 18 Mitochondrial ATP Synthesis 588
- 19 Photosynthesis: **Can be found at www.wiley.com/college/voet**
- 20 Synthesis and Degradation of lipids 664
- 21 Synthesis and Degradation of Amino Acids 718
- 22 Regulation of Fuel Metabolism 773

PART V GENE EXPRESSION AND REPLICATION

- 23 Nucleotide Synthesis and Degradation 802
- 24 DNA structure and Interactions with Proteins 831
- 25 DNA Synthesis and Repair 879
- 26 RNA Metabolism 938
- 27 The Genetic Code and Translation 982
- 28 Gene Expression in Prokaryotes and Eukaryotes 1033

Solutions: **Can be found at www.wiley.com/college/voet**

Glossary G-1

Index I-1

CONTENTS

3 Active Transport	39
Preface	xii
Acknowledgments	xv

PART I INTRODUCTION

1 Life, Cell and Thermodynamics 1

1 The Origin of Life 2

- A Biological Molecules Arose from Inanimate Substances 2
- B Complex Self-Replicating Systems Evolved from Simple Molecules 3

2 Cellular Architecture 5

- A Cells Carry Out Metabolic Reactions 6
- B There Are Two Types of Cells: Prokaryotes and Eukaryotes 7
- C Molecular Data Reveal Three Evolutionary Domains of Organisms 9
- D Organisms Continue to Evolve 10

3 Thermodynamics 11

- A The First Law of Thermodynamics States That Energy Is Conserved 11
- B The Second Law of Thermodynamics States That Entropy Tends to Increase 13
- C The Free Energy Change Determines the Spontaneity of a Process 14
- D Free Energy Changes Can Be Calculated from Reactant and Product Concentrations 16
- E Life Achieves Homeostasis While Obeying the Laws of Thermodynamics 18

BOX 1-1 Pathways of Discovery **Lynn Margulis and the Theory of Endosymbiosis** 10

BOX 1-2 Perspectives in Biochemistry **Biochemical Conventions** 12

2 Physical and Chemical Properties of Water 23

1 Physical Properties of Water 24

- A Water Is a Polar Molecule 24
- B Hydrophilic Substances Dissolve in Water 27
- C The Hydrophobic Effect Causes Nonpolar Substances to Aggregate in Water 27
- D Water Moves by Osmosis and Solutes Move by Diffusion 29

2 Chemical Properties of Water 31

- A Water Ionizes to Form H^+ and OH^- 32
- B Acids and Bases Alter the pH 33
- C Buffers Resist Changes in pH 36

BOX 2-1 Perspectives in Biochemistry **The Consequences of Ocean Acidification** 34

BOX 2-2 Biochemistry in Health and Disease **The Blood Buffering System** 38

PART II BIOMOLECULES

3 Overview of DNA Structure, Function, and Engineering 42

1 Nucleotides 43

2 Introduction to Nucleic Acid Structure 46

- A Nucleic Acids Are Polymers of Nucleotides 46

- B DNA Forms a Double Helix 47

BOX 2-3 Perspectives in Biochemistry **Box 2-3: The Double Helix** 48

BOX 2-4 Biochemistry **Box 2-4: The DNA Double Helix** 49

BOX 2-5 Biochemistry **Box 2-5: The DNA Double Helix** 50

3 Overview of Nucleic Acid Function 50

- A DNA Carries Genetic Information 51
- B Genes Direct Protein Synthesis 51

4 Nucleic Acid Sequencing 53

- A Restriction Endonucleases Cleave DNA at Specific Sequences 54
- B Electrophoresis Separates Nucleic Acids According to Size 56
- C Traditional DNA Sequencing Uses the Chain-Terminator Method 57
- D Next-Generation Sequencing Technologies Are Massively Parallel 59
- E Entire Genomes Have Been Sequenced 62
- F Evolution Results from Sequence Mutations 63

5 Manipulating DNA 66

- A Cloned DNA Is an Amplified Copy 66
- B DNA Libraries Are Collections of Cloned DNA 70
- C DNA Is Amplified by the Polymerase Chain Reaction 71
- D Recombinant DNA Technology Has Numerous Practical Applications 72

BOX 3-1 Pathways of Discovery **Francis Collins and the Gene for Cystic Fibrosis** 61

BOX 3-2 Perspectives in Biochemistry **DNA Fingerprinting** 73

BOX 3-3 Perspectives in Biochemistry **Ethical Aspects of Recombinant DNA Technology** 75

4 Amino Acids: The Building Blocks of Proteins 80

1 Amino Acid Structure 81

- A Amino Acids Are Dipolar Ions 84
- B Peptide Bonds Link Amino Acids 84
- C Amino Acid Side Chains Are Nonpolar, Polar, or Charged 84
- D The pK_a Values of Ionizable Groups Depend on Nearby Groups 86
- E Amino Acid Names Are Abbreviated 87

2 Stereochemistry 88

3 Amino Acid Derivatives 91

- A Protein Side Chains May Be Modified 92
- B Some Amino Acids Are Biologically Active 92

BOX 4-1 Pathways to Discovery **William C. Rose and the Discovery of Threonine** 81

BOX 4-2 Perspectives in Biochemistry **The RS System** 90

BOX 4-3 Perspectives in Biochemistry **Green Fluorescent Protein** 93

5 Polypeptide Analysis, Sequencing, and Evolution 97

1 Polypeptide Diversity 98

2 Protein Purification and Analysis 99

- A Purifying a Protein Requires a Strategy 100
- B Salting Out Separates Proteins by Their Solubility 102
- C Chromatography Involves Interaction with Mobile and Stationary Phases 103
- D Electrophoresis Separates Molecules According to Charge and Size 106
- E Ultracentrifugation Separates Macromolecules by Mass 108

3 Protein Sequencing 110

- A The First Step Is to Separate Subunits 110
- B The Polypeptide Chains Are Cleaved 114

- C Edman Degradation Removes a Peptide's N-Terminal Amino Acid Residue 114
- D Peptides Can Be Sequenced by Mass Spectrometry 117
- E Reconstructed Protein Sequences Are Stored in Databases 118

4 Protein Evolution 119

- A Protein Sequences Reveal Evolutionary Relationships 120
- B Proteins Evolve by the Duplication of Genes or Gene Segments 122

BOX 5-1 Pathways of Discovery **Frederick Sanger and Protein Sequencing** 112

6 Proteins: Structure and Folding 131

1 Secondary Structure 132

- A The Planar Peptide Group Limits Polypeptide Conformations 132
- B The Most Common Regular Secondary Structures Are the α Helix and the β Sheet 135
- C Fibrous Proteins Have Repeating Secondary Structures 140
- D Most Proteins Include Nonrepetitive Structure 144

2 Tertiary Structure 145

- A Protein Structures Are Determined by X-Ray Crystallography, Nuclear Magnetic Resonance, and Cryo-Electron Microscopy 145
- B Side Chain Location Varies with Polarity 149
- C Tertiary Structures Contain Combinations of Secondary Structure 150
- D Structure Is Conserved More Than Sequence 154
- E Structural Bioinformatics Provides Tools for Storing, Visualizing, and Comparing Protein Structural Information 155

3 Quaternary Structure and Symmetry 158

4 Protein Stability 160

- A Proteins Are Stabilized by Several Forces 160
- B Proteins Can Undergo Denaturation and Renaturation 162
- C Proteins Are Dynamic 164

5 Protein Folding 165

- A Proteins Follow Folding Pathways 165
- B Molecular Chaperones Assist Protein Folding 168
- C Many Diseases Are Caused by Protein Misfolding 173

BOX 6-1 Pathways of Discovery **Linus Pauling and Structural Biochemistry** 136

BOX 6-2 Biochemistry in Health and Disease **Collagen Diseases** 143

BOX 6-3 Perspectives in Biochemistry **Thermostable Proteins** 162

BOX 6-4 Perspectives in Biochemistry **Protein Structure Prediction and Protein Design** 167

7 Physiological Activities of Proteins 180

1 Oxygen Binding to Myoglobin and Hemoglobin 181

- A Myoglobin Is a Monomeric Oxygen-Binding Protein 181
- B Hemoglobin Is a Tetramer with Two Conformations 185
- C Oxygen Binds Cooperatively to Hemoglobin 187
- D Hemoglobin's Two Conformations Exhibit Different Affinities for Oxygen 190
- E Mutations May Alter Hemoglobin's Structure and Function 197

2 Muscle Contraction 200

- A Muscle Consists of Interdigitated Thick and Thin Filaments 201
- B Muscle Contraction Occurs when Myosin Heads Walk Up Thin Filaments 208
- C Actin Forms Microfilaments in Nonmuscle Cells 210

3 Antibodies 212

- A Antibodies Have Constant and Variable Regions 212
- B Antibodies Recognize a Huge Variety of Antigens 214

BOX 7-1 Perspectives in Biochemistry **Other Oxygen-Transport Proteins** 185

BOX 7-2 Pathways of Discovery **Max Perutz and the Structure and Function of Hemoglobin** 186

BOX 7-3 Biochemistry in Health and Disease **High-Altitude Adaptation** 195

BOX 7-4 Pathways of Discovery **Hugh Huxley and the Sliding Filament Model** 203

BOX 7-5 Perspectives in Biochemistry **Monoclonal Antibodies** 216

8 Saccharide Chemistry 221

1 Monosaccharides 222

- A Monosaccharides Are Aldoses or Ketoses 222
- B Monosaccharides Vary in Configuration and Conformation 223
- C Sugars Can Be Modified and Covalently Linked 225

2 Polysaccharides 228

- A Lactose and Sucrose Are Disaccharides 228
- B Cellulose and Chitin Are Structural Polysaccharides 230
- C Starch and Glycogen Are Storage Polysaccharides 231
- D Glycosaminoglycans Form Highly Hydrated Gels 232

3 Glycoproteins 234

- A Proteoglycans Contain Glycosaminoglycans 235
- B Bacterial Cell Walls Are Made of Peptidoglycan 235
- C Many Eukaryotic Proteins Are Glycosylated 238
- D Oligosaccharides May Determine Glycoprotein Structure, Function, and Recognition 240

BOX 8-1 Biochemistry in Health and Disease **Lactose Intolerance** 228

BOX 8-2 Perspectives in Biochemistry **Artificial Sweeteners** 229

BOX 8-3 Biochemistry in Health and Disease **Peptidoglycan-Specific Antibiotics** 238

9 Lipids, Bilayers, and Membranes 245

1 Lipid Classification 246

- A The Properties of Fatty Acids Depend on Their Hydrocarbon Chains 246
- B Triacylglycerols Contain Three Esterified Fatty Acids 248
- C Glycerophospholipids Are Amphiphilic 249
- D Sphingolipids Are Amino Alcohol Derivatives 252
- E Steroids Contain Four Fused Rings 254
- F Other Lipids Perform a Variety of Metabolic Roles 256

2 Lipid Bilayers 259

- A Bilayer Formation Is Driven by the Hydrophobic Effect 259
- B Lipid Bilayers Have Fluidlike Properties 260

3 Membrane Proteins 262

- A Integral Membrane Proteins Interact with Hydrophobic Lipids 262
- B Lipid-Linked Proteins Are Anchored to the Bilayer 267
- C Peripheral Proteins Associate Loosely with Membranes 268

4 Membrane Structure and Assembly 269

- A The Fluid Mosaic Model Accounts for Lateral Diffusion 269
- B The Membrane Skeleton Helps Define Cell Shape 271
- C Membrane Lipids Are Distributed Asymmetrically 274
- D The Secretory Pathway Generates Secreted and Transmembrane Proteins 276
- E Intracellular Vesicles Transport Proteins 280
- F Proteins Mediate Vesicle Fusion 284

BOX 9-1 Biochemistry in Health and Disease **Lung Surfactant** 251

BOX 9-2 Pathways of Discovery **Richard Henderson and the Structure of Bacteriorhodopsin** 265

BOX 9-3 Biochemistry in Health and Disease **Tetanus and Botulinum Toxins Specifically Cleave SNAREs** 286

10 Passive and Active Transport 293

1 Thermodynamics of Transport 294

2 Passive-Mediated Transport 295

- A Ionophores Carry Ions across Membranes 295
- B Porins Contain β Barrels 297
- C Ion Channels Are Highly Selective 297
- D Aquaporins Mediate the Transmembrane Movement of Water 304
- E Transport Proteins Alternate between Two Conformations 305

3 Active Transport 309

- A The $(\text{Na}^+ - \text{K}^+)$ -ATPase Transports Ions in Opposite Directions 310
- B The Ca^{2+} -ATPase Pumps Ca^{2+} Out of the Cytosol 312
- C ABC Transporters Are Responsible for Drug Resistance 314
- D Active Transport May Be Driven by Ion Gradients 315

BOX 10-1 Perspectives in Biochemistry **Gap Junctions** 306

BOX 10-2 Perspectives in Biochemistry **Differentiating Mediated and Nonmediated Transport** 308

BOX 10-3 Biochemistry in Health and Disease **The Action of Cardiac Glycosides** 312

PART III ENZYMES

11 Mechanisms of Enzyme Action 322

1 General Properties of Enzymes 323

- A Enzymes Are Classified by the Type of Reaction They Catalyze 324
- B Enzymes Act on Specific Substrates 324
- C Some Enzymes Require Cofactors 326

2 Activation Energy and the Reaction Coordinate 327

3 Catalytic Mechanisms 330

- A Acid-Base Catalysis Occurs by Proton Transfer 330
- B Covalent Catalysis Usually Requires a Nucleophile 334
- C Metal Ion Cofactors Act as Catalysts 335
- D Catalysis Can Occur through Proximity and Orientation Effects 336
- E Enzymes Catalyze Reactions by Preferentially Binding the Transition State 338

4 Lysozyme 339

- A Lysozyme's Catalytic Site Was Identified through Model Building 340
- B The Lysozyme Reaction Proceeds via a Covalent Intermediate 342

5 Serine Proteases 345

- A Active Site Residues Were Identified by Chemical Labeling 345
- B X-Ray Structures Provide Information about Catalysis, Substrate Specificity, and Evolution 346
- C Serine Proteases Use Several Catalytic Mechanisms 350
- D Zymogens Are Inactive Enzyme Precursors 355

BOX 11-1 Perspectives in Biochemistry **Drawing Reaction Mechanisms** 331

BOX 11-2 Perspectives in Biochemistry **Effects of pH on Enzyme Activity** 332

BOX 11-3 Biochemistry in Health and Disease **Nerve Poisons** 346

BOX 11-4 Biochemistry in Health and Disease **The Blood Coagulation Cascade** 356

12 Properties of Enzymes 361

1 Reaction Kinetics 362

- A Chemical Kinetics Is Described by Rate Equations 362
- B Enzyme Kinetics Often Follows the Michaelis-Menten Equation 364
- C Kinetic Data Can Provide Values of V_{max} and K_M 369
- D Bisubstrate Reactions Follow One of Several Rate Equations 372

2 Enzyme Inhibition 374

- A Competitive Inhibition Involves Inhibitor Binding at an Enzyme's Substrate Binding Site 374
- B Uncompetitive Inhibition Involves Inhibitor Binding to the Enzyme-Substrate Complex 380

- C Mixed Inhibition Involves Inhibitor Binding to Both the Free Enzyme and the Enzyme-Substrate Complex 381

3 Control of Enzyme Activity 382

- A Allosteric Control Involves Binding at a Site Other than the Active Site 383
- B Control by Covalent Modification Usually Involves Protein Phosphorylation 387

4 Drug Design 391

- A Drug Discovery Employs a Variety of Techniques 392
- B A Drug's Bioavailability Depends on How It Is Absorbed and Transported in the Body 393
- C Clinical Trials Test for Efficacy and Safety 393
- D Cytochromes P450 Are Often Implicated in Adverse Drug Reactions 395

BOX 12-1 Pathways of Discovery **J.B.S. Haldane and Enzyme Action** 366

BOX 12-2 Perspectives in Biochemistry **Kinetics and Transition State Theory** 369

BOX 12-3 Biochemistry in Health and Disease **HIV Enzyme Inhibitors** 376

13 Hormones and Signal Transduction 402

1 Hormones 403

- A Pancreatic Islet Hormones Control Fuel Metabolism 404
- B Epinephrine and Norepinephrine Prepare the Body for Action 405
- C Steroid Hormones Regulate a Wide Variety of Metabolic and Sexual Processes 406
- D Growth Hormone Binds to Receptors in Muscle, Bone, and Cartilage 407

2 Receptor Tyrosine Kinases 408

- A Receptor Tyrosine Kinases Transmit Signals across the Cell Membrane 409
- B Kinase Cascades Relay Signals to the Nucleus 412
- C Some Receptors Are Associated with Nonreceptor Tyrosine Kinases 417
- D Protein Phosphatases Are Signaling Proteins in Their Own Right 420

3 Heterotrimeric G Proteins 423

- A G-Protein-Coupled Receptors Contain Seven Transmembrane Helices 424
- B Heterotrimeric G Proteins Dissociate on Activation 426
- C Adenylate Cyclase Synthesizes cAMP to Activate Protein Kinase A 427
- D Phosphodiesterases Limit Second Messenger Activity 432

4 The Phosphoinositide Pathway 432

- A Ligand Binding Results in the Cytoplasmic Release of the Second Messengers IP_3 and Ca^{2+} 433
- B Calmodulin Is a Ca^{2+} -Activated Switch 434
- C DAG Is a Lipid-Soluble Second Messenger That Activates Protein Kinase C 436
- D Epilog: Complex Systems Have Emergent Properties 437

BOX 13-1 Pathways of Discovery **Rosalyn Yalow and the Radioimmunoassay (RIA)** 404

BOX 13-2 Perspectives in Biochemistry **Receptor-Ligand Binding Can Be Quantitated** 410

BOX 13-3 Biochemistry in Health and Disease **Oncogenes and Cancer** 416

BOX 13-4 Biochemistry in Health and Disease **Drugs and Toxins That Affect Cell Signaling** 431

PART IV METABOLISM

14 Bioenergetics 442

1 Overview of Metabolism 443

- A Nutrition Involves Food Intake and Use 443
- B Vitamins and Minerals Assist Metabolic Reactions 444
- C Metabolic Pathways Consist of Series of Enzymatic Reactions 445
- D Thermodynamics Dictates the Direction and Regulatory Capacity of Metabolic Pathways 449
- E Metabolic Flux Must Be Controlled 450

2 “High-Energy” Compounds 452

- A ATP Has a High Phosphoryl Group-Transfer Potential 454
- B Coupled Reactions Drive Endergonic Processes 455
- C Some Other Phosphorylated Compounds Have High Phosphoryl Group-Transfer Potentials 457
- D Thioesters Are Energy-Rich Compounds 460

3 Oxidation–Reduction Reactions 462

- A NAD⁺ and FAD Are Electron Carriers 462
- B The Nernst Equation Describes Oxidation–Reduction Reactions 463
- C Spontaneity Can Be Determined by Measuring Reduction Potential Differences 465

4 Experimental Approaches to the Study of Metabolism 468

- A Labeled Metabolites Can Be Traced 468
- B Studying Metabolic Pathways Often Involves Perturbing the System 470
- C Systems Biology Has Entered the Study of Metabolism 471

BOX 14-1 Perspectives in Biochemistry **Oxidation States of Carbon** 447

BOX 14-2 Pathways of Discovery **Fritz Lipmann and “High-Energy” Compounds** 453

BOX 14-3 Perspectives in Biochemistry **ATP and ΔG** 455

15 Glycolysis and the Pentose Phosphate Pathway 478

1 Overview of Glycolysis 479

2 The Reactions of Glycolysis 481

- A Hexokinase Uses the First ATP 482
- B Phosphoglucose Isomerase Converts Glucose-6-Phosphate to Fructose-6-Phosphate 482
- C Phosphofructokinase Uses the Second ATP 484
- D Aldolase Converts a 6-Carbon Compound to Two 3-Carbon Compounds 484
- E Triose Phosphate Isomerase Interconverts Dihydroxyacetone Phosphate and Glyceraldehyde-3-Phosphate 485
- F Glyceraldehyde-3-Phosphate Dehydrogenase Forms the First “High-Energy” Intermediate 489
- G Phosphoglycerate Kinase Generates the First ATP 491
- H Phosphoglycerate Mutase Interconverts 3-Phosphoglycerate and 2-Phosphoglycerate 492
- I Enolase Forms the Second “High-Energy” Intermediate 493
- J Pyruvate Kinase Generates the Second ATP 494

3 Fermentation: The Anaerobic Fate of Pyruvate 497

- A Homolactic Fermentation Converts Pyruvate to Lactate 498
- B Alcoholic Fermentation Converts Pyruvate to Ethanol and CO₂ 498
- C Fermentation Is Energetically Favorable 501

4 Regulation of Glycolysis 502

- A Phosphofructokinase Is the Major Flux-Controlling Enzyme of Glycolysis in Muscle 503
- B Substrate Cycling Fine-Tunes Flux Control 506

5 Metabolism of Hexoses Other than Glucose 508

- A Fructose Is Converted to Fructose-6-Phosphate or Glyceraldehyde-3-Phosphate 508
- B Galactose Is Converted to Glucose-6-Phosphate 510
- C Mannose Is Converted to Fructose-6-Phosphate 512

6 The Pentose Phosphate Pathway 512

- A Oxidative Reactions Produce NADPH in Stage 1 514
- B Isomerization and Epimerization of Ribulose-5-Phosphate Occur in Stage 2 515
- C Stage 3 Involves Carbon–Carbon Bond Cleavage and Formation 515
- D The Pentose Phosphate Pathway Must Be Regulated 518

BOX 15-1 Pathways of Discovery **Otto Warburg and Studies of Metabolism** 479

BOX 15-2 Perspectives in Biochemistry **Synthesis of 2,3-Bisphosphoglycerate in Erythrocytes and Its Effect on the Oxygen Carrying Capacity of the Blood** 494

BOX 15-3 Perspectives in Biochemistry **Glycolytic ATP Production in Muscle** 502

BOX 15-4 Biochemistry in Health and Disease **Glucose-6-Phosphate Dehydrogenase Deficiency** 518

16 Additional Pathways in Carbohydrate Metabolism 523

1 Glycogen Breakdown 524

- A Glycogen Phosphorylase Degrades Glycogen to Glucose-1-Phosphate 525
- B Glycogen Debranching Enzyme Acts as a Glucosyltransferase 528
- C Phosphoglucomutase Interconverts Glucose-1-Phosphate and Glucose-6-Phosphate 529

2 Glycogen Synthesis 532

- A UDP–Glucose Pyrophosphorylase Activates Glucosyl Units 532
- B Glycogen Synthase Extends Glycogen Chains 533
- C Glycogen Branching Enzyme Transfers Seven-Residue Glycogen Segments 535

3 Control of Glycogen Metabolism 536

- A Glycogen Phosphorylase and Glycogen Synthase Are under Allosteric Control 536
- B Glycogen Phosphorylase and Glycogen Synthase Undergo Control by Covalent Modification 536
- C Glycogen Metabolism Is Subject to Hormonal Control 542

4 Gluconeogenesis 544

- A Pyruvate Is Converted to Phosphoenolpyruvate in Two Steps 545
- B Hydrolytic Reactions Bypass Irreversible Glycolytic Reactions 549
- C Gluconeogenesis and Glycolysis Are Independently Regulated 549

5 Other Carbohydrate Biosynthetic Pathways 551

BOX 16-1 Pathways of Discovery **Carl and Gerty Cori and Glucose Metabolism** 526

BOX 16-2 Biochemistry in Health and Disease **Glycogen Storage Diseases** 530

BOX 16-3 Perspectives in Biochemistry **Optimizing Glycogen Structure** 537

BOX 16-4 Perspectives in Biochemistry **Lactose Synthesis** 552

17 The Citric Acid Cycle 558

1 Overview of the Citric Acid Cycle 559

2 Synthesis of Acetyl-Coenzyme A 562

- A Pyruvate Dehydrogenase Is a Multienzyme Complex 562
- B The Pyruvate Dehydrogenase Complex Catalyzes Five Reactions 564

3 Enzymes of the Citric Acid Cycle 568

- A Citrate Synthase Joins an Acetyl Group to Oxaloacetate 568
- B Aconitase Interconverts Citrate and Isocitrate 570
- C NAD⁺-Dependent Isocitrate Dehydrogenase Releases CO₂ 571
- D α -Ketoglutarate Dehydrogenase Resembles Pyruvate Dehydrogenase 572
- E Succinyl-CoA Synthetase Produces GTP 572
- F Succinate Dehydrogenase Generates FADH₂ 574
- G Fumarase Produces Malate 574
- H Malate Dehydrogenase Regenerates Oxaloacetate 574

4 Regulation of the Citric Acid Cycle 575

- A Pyruvate Dehydrogenase Is Regulated by Product Inhibition and Covalent Modification 576
- B Three Enzymes Control the Rate of the Citric Acid Cycle 577

5 Reactions Related to the Citric Acid Cycle 579

- A Other Pathways Use Citric Acid Cycle Intermediates 580
- B Some Reactions Replenish Citric Acid Cycle Intermediates 581
- C The Glyoxylate Cycle Shares Some Steps with the Citric Acid Cycle 582

BOX 17-1 Pathways of Discovery **Hans Krebs and the Citric Acid Cycle** 561

BOX 17-2 Biochemistry in Health and Disease **Arsenic Poisoning** 568

BOX 17-3 Perspectives in Biochemistry **Evolution of the Citric Acid Cycle** 582

18 Mitochondrial ATP Synthesis 588

1 The Mitochondrion 589

- A Mitochondria Contain a Highly Folded Inner Membrane 590
- B Ions and Metabolites Enter Mitochondria via Transporters 591

2 Electron Transport 593

- A Electron Transport Is an Exergonic Process 593
- B Electron Carriers Operate in Sequence 594
- C Complex I Accepts Electrons from NADH 597
- D Complex II Contributes Electrons to Coenzyme Q 601
- E Complex III Translocates Protons via the Q Cycle 603
- F Complex IV Reduces Oxygen to Water 607

3 Oxidative Phosphorylation 609

- A The Chemiosmotic Theory Links Electron Transport to ATP Synthesis 610
- B ATP Synthase Is Driven by the Flow of Protons 613
- C The P/O Ratio Relates the Amount of ATP Synthesized to the Amount of Oxygen Reduced 618
- D Oxidative Phosphorylation Can Be Uncoupled from Electron Transport 619

4 Control of Oxidative Metabolism 620

- A The Rate of Oxidative Phosphorylation Depends on the ATP and NADH Concentrations 622
- B Aerobic Metabolism Has Some Disadvantages 623

BOX 18-1 Perspectives in Biochemistry **Cytochromes Are Electron-Transport Heme Proteins** 602

BOX 18-2 Pathways of Discovery **Peter Mitchell and the Chemiosmotic Theory** 611

BOX 18-3 Perspectives in Biochemistry **Bacterial Electron Transport and Oxidative Phosphorylation** 612

BOX 18-4 Perspectives in Biochemistry **Uncoupling in Brown Adipose Tissue Generates Heat** 621

BOX 18-5 Biochemistry in Health and Disease **Oxygen Deprivation in Heart Attack and Stroke** 625

19 Photosynthesis 630

1 Chloroplasts 631

- A The Light Reactions Take Place in the Thylakoid Membrane 631
- B Pigment Molecules Absorb Light 632

2 The Light Reactions 635

- A Light Energy Is Transformed to Chemical Energy 635
- B Electron Transport in Photosynthetic Bacteria Follows a Circular Path 637
- C Two-Center Electron Transport Is a Linear Pathway That Produces O₂ and NADPH 639
- D The Proton Gradient Drives ATP Synthesis by Photophosphorylation 650

3 The Dark Reactions 651

- A The Calvin Cycle Fixes CO₂ 651
- B Calvin Cycle Products Are Converted to Starch, Sucrose, and Cellulose 655
- C The Calvin Cycle Is Controlled Indirectly by Light 656
- D Photorespiration Competes with Photosynthesis 658

BOX 19-1 Perspectives in Biochemistry **Segregation of PSI and PSII** 649

CHAPTER 19 can be found at www.wiley.com/college/voet

20 Synthesis and Degradation of Lipids 664

1 Lipid Digestion, Absorption, and Transport 664

- A Triacylglycerols Are Digested before They Are Absorbed 665
- B Lipids Are Transported as Lipoproteins 667

2 Fatty Acid Oxidation 671

- A Fatty Acids Are Activated by Their Attachment to Coenzyme A 672
- B Carnitine Carries Acyl Groups across the Mitochondrial Membrane 672
- C β Oxidation Degrades Fatty Acids to Acetyl-CoA 674
- D Oxidation of Unsaturated Fatty Acids Requires Additional Enzymes 676
- E Oxidation of Odd-Chain Fatty Acids Yields Propionyl-CoA 678
- F Peroxisomal β Oxidation Differs from Mitochondrial β Oxidation 684

3 Ketone Bodies 685

4 Fatty Acid Biosynthesis 686

- A Mitochondrial Acetyl-CoA Must Be Transported into the Cytosol 687
- B Acetyl-CoA Carboxylase Produces Malonyl-CoA 688
- C Fatty Acid Synthase Catalyzes Seven Reactions 689
- D Fatty Acids May Be Elongated and Desaturated 695
- E Fatty Acids Are Esterified to Form Triacylglycerols 696

5 Regulation of Fatty Acid Metabolism 697

6 Synthesis of Other Lipids 700

- A Glycerophospholipids Are Built from Intermediates of Triacylglycerol Synthesis 700
- B Sphingolipids Are Built from Palmitoyl-CoA and Serine 703
- C C₂₀ Fatty Acids Are the Precursors of Prostaglandins 704

7 Cholesterol Metabolism 706

- A Cholesterol Is Synthesized from Acetyl-CoA 707
- B HMG-CoA Reductase Controls the Rate of Cholesterol Synthesis 710
- C Abnormal Cholesterol Transport Leads to Atherosclerosis 713

BOX 20-1 Biochemistry in Health and Disease **Vitamin B₁₂ Deficiency** 680

BOX 20-2 Pathways of Discovery **Dorothy Crowfoot Hodgkin and the Structure of Vitamin B₁₂** 680

BOX 20-3 Perspectives in Biochemistry **Polyketide Synthesis** 694

BOX 20-4 Biochemistry in Health and Disease **Sphingolipid Degradation and Lipid Storage Diseases** 706

21 Synthesis and Degradation of Amino Acids 718

1 Protein Degradation 719

- A Lysosomes Degrade Many Proteins 719
- B Ubiquitin Marks Proteins for Degradation 720
- C The Proteasome Unfolds and Hydrolyzes Ubiquitinated Polypeptides 721

2 Amino Acid Deamination 724

- A Transaminases Use PLP to Transfer Amino Groups 725
- B Glutamate Can Be Oxidatively Deaminated 728

3 The Urea Cycle 728

- A Five Enzymes Carry Out the Urea Cycle 729
- B The Urea Cycle Is Regulated by Substrate Availability 732

4 Breakdown of Amino Acids 733

- A Alanine, Cysteine, Glycine, Serine, and Threonine Are Degraded to Pyruvate 734
- B Asparagine and Aspartate Are Degraded to Oxaloacetate 736
- C Arginine, Glutamate, Glutamine, Histidine, and Proline Are Degraded to α -Ketoglutarate 737

- A Other Pathways Use Citric Acid Cycle Intermediates 580
- B Some Reactions Replenish Citric Acid Cycle Intermediates 581
- C The Glyoxylate Cycle Shares Some Steps with the Citric Acid Cycle 582

BOX 17-1 Pathways of Discovery **Hans Krebs and the Citric Acid Cycle** 561

BOX 17-2 Biochemistry in Health and Disease **Arsenic Poisoning** 568

BOX 17-3 Perspectives in Biochemistry **Evolution of the Citric Acid Cycle** 582

18 Mitochondrial ATP Synthesis 588

1 The Mitochondrion 589

- A Mitochondria Contain a Highly Folded Inner Membrane 590
- B Ions and Metabolites Enter Mitochondria via Transporters 591

2 Electron Transport 593

- A Electron Transport Is an Exergonic Process 593
- B Electron Carriers Operate in Sequence 594
- C Complex I Accepts Electrons from NADH 597
- D Complex II Contributes Electrons to Coenzyme Q 601
- E Complex III Translocates Protons via the Q Cycle 603
- F Complex IV Reduces Oxygen to Water 607

3 Oxidative Phosphorylation 609

- A The Chemiosmotic Theory Links Electron Transport to ATP Synthesis 610
- B ATP Synthase Is Driven by the Flow of Protons 613
- C The P/O Ratio Relates the Amount of ATP Synthesized to the Amount of Oxygen Reduced 618
- D Oxidative Phosphorylation Can Be Uncoupled from Electron Transport 619

4 Control of Oxidative Metabolism 620

- A The Rate of Oxidative Phosphorylation Depends on the ATP and NADH Concentrations 622
- B Aerobic Metabolism Has Some Disadvantages 623

BOX 18-1 Perspectives in Biochemistry **Cytochromes Are Electron-Transport Heme Proteins** 602

BOX 18-2 Pathways of Discovery **Peter Mitchell and the Chemiosmotic Theory** 611

BOX 18-3 Perspectives in Biochemistry **Bacterial Electron Transport and Oxidative Phosphorylation** 612

BOX 18-4 Perspectives in Biochemistry **Uncoupling in Brown Adipose Tissue Generates Heat** 621

BOX 18-5 Biochemistry in Health and Disease **Oxygen Deprivation in Heart Attack and Stroke** 625

19 Photosynthesis 630

1 Chloroplasts 631

- A The Light Reactions Take Place in the Thylakoid Membrane 631
- B Pigment Molecules Absorb Light 632

2 The Light Reactions 635

- A Light Energy Is Transformed to Chemical Energy 635
- B Electron Transport in Photosynthetic Bacteria Follows a Circular Path 637
- C Two-Center Electron Transport Is a Linear Pathway That Produces O₂ and NADPH 639
- D The Proton Gradient Drives ATP Synthesis by Photophosphorylation 650

3 The Dark Reactions 651

- A The Calvin Cycle Fixes CO₂ 651
- B Calvin Cycle Products Are Converted to Starch, Sucrose, and Cellulose 655
- C The Calvin Cycle Is Controlled Indirectly by Light 656
- D Photorespiration Competes with Photosynthesis 658

BOX 19-1 Perspectives in Biochemistry **Segregation of PSI and PSII** 649

CHAPTER 19 can be found at www.wiley.com/college/voet

20 Synthesis and Degradation of Lipids 664

1 Lipid Digestion, Absorption, and Transport 664

- A Triacylglycerols Are Digested before They Are Absorbed 665
- B Lipids Are Transported as Lipoproteins 667

2 Fatty Acid Oxidation 671

- A Fatty Acids Are Activated by Their Attachment to Coenzyme A 672
- B Carnitine Carries Acyl Groups across the Mitochondrial Membrane 672
- C β Oxidation Degrades Fatty Acids to Acetyl-CoA 674
- D Oxidation of Unsaturated Fatty Acids Requires Additional Enzymes 676
- E Oxidation of Odd-Chain Fatty Acids Yields Propionyl-CoA 678
- F Peroxisomal β Oxidation Differs from Mitochondrial β Oxidation 684

3 Ketone Bodies 685

4 Fatty Acid Biosynthesis 686

- A Mitochondrial Acetyl-CoA Must Be Transported into the Cytosol 687
- B Acetyl-CoA Carboxylase Produces Malonyl-CoA 688
- C Fatty Acid Synthase Catalyzes Seven Reactions 689
- D Fatty Acids May Be Elongated and Desaturated 695
- E Fatty Acids Are Esterified to Form Triacylglycerols 696

5 Regulation of Fatty Acid Metabolism 697

6 Synthesis of Other Lipids 700

- A Glycerophospholipids Are Built from Intermediates of Triacylglycerol Synthesis 700
- B Sphingolipids Are Built from Palmitoyl-CoA and Serine 703
- C C₂₀ Fatty Acids Are the Precursors of Prostaglandins 704

7 Cholesterol Metabolism 706

- A Cholesterol Is Synthesized from Acetyl-CoA 707
- B HMG-CoA Reductase Controls the Rate of Cholesterol Synthesis 710
- C Abnormal Cholesterol Transport Leads to Atherosclerosis 713

BOX 20-1 Biochemistry in Health and Disease **Vitamin B₁₂ Deficiency** 680

BOX 20-2 Pathways of Discovery **Dorothy Crowfoot Hodgkin and the Structure of Vitamin B₁₂** 680

BOX 20-3 Perspectives in Biochemistry **Polyketide Synthesis** 694

BOX 20-4 Biochemistry in Health and Disease **Sphingolipid Degradation and Lipid Storage Diseases** 706

21 Synthesis and Degradation of Amino Acids 718

1 Protein Degradation 719

- A Lysosomes Degrade Many Proteins 719
- B Ubiquitin Marks Proteins for Degradation 720
- C The Proteasome Unfolds and Hydrolyzes Ubiquitinated Polypeptides 721

2 Amino Acid Deamination 724

- A Transaminases Use PLP to Transfer Amino Groups 725
- B Glutamate Can Be Oxidatively Deaminated 728

3 The Urea Cycle 728

- A Five Enzymes Carry Out the Urea Cycle 729
- B The Urea Cycle Is Regulated by Substrate Availability 732

4 Breakdown of Amino Acids 733

- A Alanine, Cysteine, Glycine, Serine, and Threonine Are Degraded to Pyruvate 734
- B Asparagine and Aspartate Are Degraded to Oxaloacetate 736
- C Arginine, Glutamate, Glutamine, Histidine, and Proline Are Degraded to α -Ketoglutarate 737

- D Methionine, Threonine, Isoleucine, and Valine Are Degraded to Succinyl-CoA 738
- E Leucine and Lysine Are Degraded Only to Acetyl-CoA and/or Acetoacetate 743
- F Tryptophan Is Degraded to Alanine and Acetoacetate 744
- G Phenylalanine and Tyrosine Are Degraded to Fumarate and Acetoacetate 745

5 Amino Acid Biosynthesis 746

- A Nonessential Amino Acids Are Synthesized from Common Metabolites 748
- B Plants and Microorganisms Synthesize the Essential Amino Acids 752

6 Other Products of Amino Acid Metabolism 758

- A Heme Is Synthesized from Glycine and Succinyl-CoA 758
- B Amino Acids Are Precursors of Physiologically Active Amines 762
- C Nitric Oxide Is Derived from Arginine 763

7 Nitrogen Fixation 764

- A Nitrogenase Reduces N₂ to NH₃ 764
- B Fixed Nitrogen Is Assimilated into Biological Molecules 768

BOX 21-1 Biochemistry in Health and Disease **Homocysteine, a Marker of Disease** 740

BOX 21-2 Biochemistry in Health and Disease **Phenylketonuria and Alcaptonuria Result from Defects in Phenylalanine Degradation** 746

BOX 21-3 Biochemistry in Health and Disease **The Porphyrias** 760

22 Regulation of Fuel Metabolism 773

1 Organ Specialization 774

- A The Brain Requires a Steady Supply of Glucose 775
- B Muscle Utilizes Glucose, Fatty Acids, and Ketone Bodies 776
- C Adipose Tissue Stores and Releases Fatty Acids and Hormones 778
- D Liver Is the Body's Central Metabolic Clearinghouse 778
- E Kidney Filters Wastes and Maintains Blood pH 780
- F Blood Transports Metabolites in Interorgan Metabolic Pathways 780

2 Hormonal Control of Fuel Metabolism 781

- A Insulin Release Is Triggered by Glucose 782
- B Glucagon and Catecholamines Counter the Effects of Insulin 783

3 Metabolic Homeostasis: The Regulation of Energy Metabolism, Appetite, and Body Weight 786

- A AMP-Dependent Protein Kinase Is the Cell's Fuel Gauge 786
- B Adipocytes and Other Tissues Help Regulate Fuel Metabolism and Appetite 788
- C Energy Expenditure Can Be Controlled by Adaptive Thermogenesis 789

4 Disturbances in Fuel Metabolism 790

- A Starvation Leads to Metabolic Adjustments 790
- B Diabetes Mellitus Is Characterized by High Blood Glucose Levels 792
- C Obesity Is Usually Caused by Excessive Food Intake 795
- D Cancer Metabolism 796

BOX 22-1 Biochemistry in Health and Disease **The Intestinal Microbiome** 777

BOX 22-2 Pathways of Discovery **Frederick Banting and Charles Best and the Discovery of Insulin** 794

PART V GENE EXPRESSION AND REPLICATION

23 Nucleotide Synthesis and Degradation 802

1 Synthesis of Purine Ribonucleotides 802

- A Purine Synthesis Yields Inosine Monophosphate 803
- B IMP Is Converted to Adenine and Guanine Ribonucleotides 806
- C Purine Nucleotide Biosynthesis Is Regulated at Several Steps 807
- D Purines Can Be Salvaged 808

2 Synthesis of Pyrimidine Ribonucleotides 809

- A UMP Is Synthesized in Six Steps 809
- B UMP Is Converted to UTP and CTP 811
- C Pyrimidine Nucleotide Biosynthesis Is Regulated at ATCase or Carbamoyl Phosphate Synthetase II 811

3 Formation of Deoxyribonucleotides 812

- A Ribonucleotide Reductase Converts Ribonucleotides to Deoxyribonucleotides 812
- B dUMP Is Methylated to Form Thymine 817

4 Nucleotide Degradation 820

- A Purine Catabolism Yields Uric Acid 822
- B Some Animals Degrade Uric Acid 825
- C Pyrimidines Are Broken Down to Malonyl-CoA and Methylmalonyl-CoA 827

BOX 23-1 Biochemistry in Health and Disease **Inhibition of Thymidylate Synthesis in Cancer Therapy** 821

BOX 23-2 Pathways of Discovery **Gertrude Elion and Purine Derivatives** 826

24 DNA structure and Interactions with Proteins 831

1 The DNA Helix 832

- A DNA Can Adopt Different Conformations 832
- B DNA Has Limited Flexibility 838
- C DNA Can Be Supercoiled 840
- D Topoisomerases Alter DNA Supercoiling 842

2 Forces Stabilizing Nucleic Acid Structures 848

- A Nucleic Acids Are Stabilized by Base Pairing, Stacking, and Ionic Interactions 849
- B DNA Can Undergo Denaturation and Renaturation 850
- C RNA Structures Are Highly Variable 852

3 Fractionation of Nucleic Acids 856

- A Nucleic Acids Can Be Purified by Chromatography 856
- B Electrophoresis Separates Nucleic Acids by Size 857

4 DNA–Protein Interactions 859

- A Restriction Endonucleases Distort DNA on Binding 860
- B Prokaryotic Repressors Often Include a DNA-Binding Helix 861
- C Eukaryotic Transcription Factors May Include Zinc Fingers or Leucine Zippers 864

5 Eukaryotic Chromosome Structure 868

- A DNA Coils around Histones to Form Nucleosomes 868
- B Chromatin Forms Higher-Order Structures 870

BOX 24-1 Pathways of Discovery **Rosalind Franklin and the Structure of DNA** 833

BOX 24-2 Biochemistry in Health and Disease **Inhibitors of Topoisomerases as Antibiotics and Anticancer Chemotherapeutic Agents** 848

BOX 24-3 Perspectives in Biochemistry **The RNA World** 854

25 DNA Synthesis and Repair 879

1 Overview of DNA Replication 880

2 Prokaryotic DNA Replication 882

- A DNA Polymerases Add the Correctly Paired Nucleotides 883
- B Replication Initiation Requires Helicase and Primase 889
- C The Leading and Lagging Strands Are Synthesized Simultaneously 891
- D Replication Terminates at Specific Sites 895
- E DNA Is Replicated with High Fidelity 897

3 Eukaryotic DNA Replication 898

- A Eukaryotes Use Several DNA Polymerases 898
- B Eukaryotic DNA Is Replicated from Multiple Origins 900
- C Telomerase Extends Chromosome Ends 902

4 DNA Damage 904

- A Environmental and Chemical Agents Generate Mutations 905
- B Many Mutagens Are Carcinogens 907

5 DNA Repair 909

- A Some Damage Can Be Directly Reversed 909
- B Base Excision Repair Requires a Glycosylase 910
- C Nucleotide Excision Repair Removes a Segment of a DNA Strand 912
- D Mismatch Repair Corrects Replication Errors 913
- E Some DNA Repair Mechanisms Introduce Errors 914

6 Recombination 916

- A Homologous Recombination Involves Several Protein Complexes 916
- B DNA Can Be Repaired by Recombination 922
- C CRISPR–Cas9, a System for Editing and Regulating Genomes 925
- D Transposition Rearranges Segments of DNA 929

BOX 25-1 Pathways of Discovery **Arthur Kornberg and DNA Polymerase I** 883

BOX 25-2 Perspectives in Biochemistry **Reverse Transcriptase** 900

BOX 25-3 Biochemistry in Health and Disease **Telomerase, Aging, and Cancer** 905

BOX 25-4 Perspectives in Biochemistry **DNA Methylation** 908

BOX 25-5 Perspectives in Biochemistry **Why Doesn't DNA Contain Uracil?** 911

26 RNA Metabolism 938

1 Prokaryotic RNA Transcription 939

- A RNA Polymerase Resembles Other Polymerases 939
- B Transcription Is Initiated at a Promoter 942
- C The RNA Chain Grows from the 5' to 3' End 943
- D Transcription Terminates at Specific Sites 946

2 Transcription in Eukaryotes 948

- A Eukaryotes Have Several RNA Polymerases 949
- B Each Polymerase Recognizes a Different Type of Promoter 954
- C Transcription Factors Are Required to Initiate Transcription 956

3 Posttranscriptional Processing 961

- A Messenger RNAs Undergo 5' Capping and Addition of a 3' Tail 962
- B Splicing Removes Introns from Eukaryotic Genes 963
- C Ribosomal RNA Precursors May Be Cleaved, Modified, and Spliced 973
- D Transfer RNAs Are Processed by Nucleotide Removal, Addition, and Modification 977

BOX 26-1 Perspectives in Biochemistry **Collisions between DNA Polymerase and RNA Polymerase** 945

BOX 26-2 Biochemistry in Health and Disease **Inhibitors of Transcription** 950

BOX 26-3 Pathways of Discovery **Richard Roberts and Phillip Sharp and the Discovery of Introns** 964

27 The Genetic Code and Translation 982

1 The Genetic Code 983

- A Codons Are Triplets That Are Read Sequentially 983

- B The Genetic Code Was Systematically Deciphered 984
- C The Genetic Code Is Degenerate and Nonrandom 986

2 Transfer RNA and Its Aminoacylation 988

- A All tRNAs Have Similar Structures 988
- B Aminoacyl-tRNA Synthetases Attach Amino Acids to tRNAs 990
- C Most tRNAs Recognize More than One Codon 994

3 Ribosomes 996

- A The Prokaryotic Ribosome Consists of Two Subunits 997
- B The Eukaryotic Ribosome Contains a Buried Prokaryotic Ribosome 1002

4 Translation 1004

- A Chain Initiation Requires an Initiator tRNA and Initiation Factors 1006
- B The Ribosome Decodes the mRNA, Catalyzes Peptide Bond Formation, Then Moves to the Next Codon 1011
- C Release Factors Terminate Translation 1023

5 Posttranslational Processing 1024

- A Ribosome-Associated Chaperones Help Proteins Fold 1025
- B Newly Synthesized Proteins May Be Covalently Modified 1026

BOX 27-1 Perspectives in Biochemistry **Evolution of the Genetic Code** 986

BOX 27-2 Perspectives in Biochemistry **Expanding the Genetic Code** 996

BOX 27-3 Biochemistry in Health and Disease **Effects of Antibiotics on Protein Synthesis** 1020

28 Gene Expression in Prokaryotes and Eukaryotes 1033

1 Genome Organization 1034

- A Gene Number Varies among Organisms 1034
- B Some Genes Occur in Clusters 1037
- C Eukaryotic Genomes Contain Repetitive DNA Sequences 1039

2 Regulation of Prokaryotic Gene Expression 1043

- A The *lac* Operon Is Controlled by a Repressor 1043
- B Catabolite-Repressed Operons Can Be Activated 1046
- C Attenuation Regulates Transcription Termination 1048
- D Riboswitches Are Metabolite-Sensing RNAs 1050

3 Regulation of Eukaryotic Gene Expression 1052

- A Chromatin Structure Influences Gene Expression 1052
- B Eukaryotes Contain Multiple Transcriptional Activators 1063
- C Posttranscriptional Control Mechanisms 1069
- D Antibody Diversity Results from Somatic Recombination and Hypermutation 1076

4 The Cell Cycle, Cancer, Apoptosis, and Development 1080

- A Progress through the Cell Cycle Is Tightly Regulated 1080
- B Tumor Suppressors Prevent Cancer 1082
- C Apoptosis Is an Orderly Process 1085
- D Development Has a Molecular Basis 1089

BOX 28-1 Biochemistry in Health and Disease **Trinucleotide Repeat Diseases** 1040

BOX 28-2 Perspectives in Biochemistry **X Chromosome Inactivation** 1053

BOX 28-3 Perspectives in Biochemistry **Nonsense-Mediated Decay** 1070

SOLUTIONS to Odd-Numbered Problems SP-1

Glossary G-1 **Index** I-1