"Lectures on Quantum Mechanics must be considered among the very best books on the subject for those who have had a good undergraduate introduction. The integration of clearly explained formalism with cogent physical examples is masterful, and the depth of knowledge and insight that Weinberg shares with readers is compelling." Mark Srednicki, Pbysics Today

Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition, to provide a concise introduction to modern quantum mechanics, in this fully updated second edition of his successful textbook.

Now including six brand new sections covering key topics such as the rigid rotator and quantum key distribution, as well as major additions to existing topics throughout, this revised edition is ideally suited to a one-year graduate course or as a reference for researchers. Beginning with a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach, Weinberg uses his remarkable expertise to elucidate topics such as Bloch waves and band structure, the Wigner-Eckart theorem, magic numbers, isospin symmetry, and general scattering theory. Problems are included at the ends of chapters, with solutions available for instructors at
www.cambridge.org/9781107111660.
New for the second edition:

- The rigid rotator
- Van der Waals forces
- Rabi oscillators and Ramsey interferometers
- Open systems
- Time reversal of scattering processes
- Quantum key distribution

PREFACE ..... page xvii
NOTATION ..... xxi
1 HISTORICAL INTRODUCTION ..... 1
1.1 Photons ..... 1Black-body radiation $\square$ Rayleigh-Jeans formula $\square$ Planck formula $\square$ Atomic constants$\square$ Photoelectric effect $\square$ Compton scattering
1.2 Atomic Spectra ..... 6Discovery of atomic nuclei $\square$ Ritz combination principle $\square$ Bohr quantization condition$\square$ Hydrogen spectrum $\square$ Atomic numbers and weights $\square$ Sommerfeld quantizationcondition $\square$ Einstein $A$ and $B$ coefficients $\square$ Lasers
1.3 Wave Mechanics ..... 13
De Broglie waves $\square$ Davisson-Germer experiment $\square$ Schrödinger equation
1.4 Matrix Mechanics ..... 16
Radiative transition rate $\square$ Harmonic oscillator $\square$ Heisenberg matrix algebraCommutation relations $\square$ Equivalence to wave mechanics $\square$ Quantization of radiation
1.5 Probabilistic Interpretation ..... 24
Scattering $\square$ Probability density and current Expectation values
Equations of motion $\square$ Eigenvalues and eigenfunctions $\square$ Uncertainty principle $\square$ Born rule for transition probabilities
Historical Bibliography ..... 30
Problems ..... 30
2.1 Schrödinger Equation for a Central Potential ..... 32
Hamiltonian for central potentials $\square$ Orbital angular momentum operator $\mathbf{L} \square$ Spectrumof $\mathbf{L}^{2} \square$ Separation of wave function $\square$ Boundary conditions
2.2 Spherical Harmonics ..... 39
Spectrum of $L_{3} \square$ Associated Legendre polynomials $\square$ Construction of spherical harmonics $\square$ Orthonormality $\square$ Parity $\square$ Legendre polynomials
2.3 The Hydrogen Atom ..... 43
Radial Schrödinger equation Power series solution Laguerre polynomials $\square$ Energy levels $\square$ Selection rules
2.4 The Two-Body Problem ..... 47
Reduced mass $\square$ Relative and center-of-mass coordinates $\square$ Relative and total momenta $\square$ Hydrogen and deuterium spectra
2.5 The Harmonic Oscillator ..... 49
Separation of wave function Raising and lowering operators
Spectrum
Normal- ized wave functions $\square$ Radiative transition matrix elements
Problems ..... 54
3 GENERAL PRINCIPLES OF QUANTUM MECHANICS ..... 55
3.1 States ..... 55
Hilbert space $\square$ Vector spaces $\square$ Norms $\square$ Completeness and independence Orthonormalization $\square$ Probabilities $\square$ Rays $\square$ Dirac notation
3.2 Continuum States ..... 61From discrete to continuum states $\square$ Normalization $\square$ Delta functions $\square$ Distributions
3.3 Observables64Operators $\square$ Adjoints $\square$ Matrix representation $\square$ Eigenvalues $\square$ Completeness of eigen-vectors $\square$ Schwarz inequality $\square$ Uncertainty principle $\square$ Dyads $\square$ Projection operators$\square$ Density matrix $\square$ Von Neumann entropy $\square$ Disentangled systems
3.4 Symmetries ..... 74Unitary operators $\square$ Wigner's theorem $\square$ Antiunitary operators $\square$ Continuous symme-tries $\square$ Commutators
3.5 Space Translation ..... 78Momentum operators $\square$ Commutation rules $\square$ Momentum eigenstates $\square$ Bloch wavesBand structure
3.6 Time Translation and Inversion ..... 82Hamiltonians $\square$ Time-dependent Schrödinger equation $\square$ Conservation laws $\square$ Timereversal $\square$ Galilean invariance $\square$ Boost generator $\square$ Time-dependence of density matrix
3.7 Interpretations of Quantum Mechanics ..... 86
Copenhagen interpretation $\square$ Measurement vs. unitary evolution of the density matrix$\square$ Correlation of system and measuring apparatus $\square$ Classical states $\square$ Decoherence $\square$Stern-Gerlach experiment $\square$ Schrödinger's cat $\square$ Where does the Born rule come from?$\square$ Instrumentalist interpretations $\square$ Decoherent histories $\square$ Realist interpretations $\square$Many worlds? $\square$ Approach to the Born rule $\square$ Conclusion
Problems ..... 102
4 SPIN ET CETERA ..... 104
4.1 Rotations ..... 106
Finite rotations $\square$ Rotation groups $O(3)$ and $S O(3) \square$ Action on physical statesInfinitesimal rotations $\square$ Commutation relations $\square$ Total angular momentum $\square$ Spin
4.2 Angular-Momentum Multiplets ..... 112
Raising and lowering operators $\square$ Spectrum of $\mathbf{J}^{2}$ and $J_{3} \square$ Spin matrices $\square$ ..... Paulimatrices $\square J_{3}$-independence $\square$ Stern-Gerlach experiment
4.3 Addition of Angular Momenta ..... 117Choice of basis $\square$ Clebsch-Gordan coefficients $\square$ Sum rules for coefficients $\square$Hydrogen states $\square$ Symmetries of coefficients $\square$ Addition theorem for sphericalharmonics $\square 3 j$ symbols $\square$ More sum rules $\square S U(2)$ formalism
4.4 The Wigner-Eckart Theorem ..... 128
Operator transformation properties $\square$ Theorem for matrix elements $\square$ Parallel matrixelements $\square$ Photon emission selection rules
4.5 Bosons and Fermions ..... 132Symmetrical and antisymmetrical states $\square$ Connection with spin $\square$ Hartree approxi-mation $\square$ Pauli exclusion principle $\square$ Periodic table for atoms $\square$ Magic numbers fornuclei $\square$ Temperature and chemical potential $\square$ Statistics $\square$ Insulators, conductors,semi-conductors
4.6 Internal Symmetries ..... 141
Charge symmetry $\square$ Isotopic spin symmetry $\square$ Pions $\square \Delta \mathrm{s} \square$ Strangeness $\square U(1)$ symmetries $\square S U(3)$ symmetry
4.7 Inversions ..... 150Space inversion $\square$ Orbital parity $\square$ Intrinsic parity $\square$ Parity of pions $\square$ Violations ofparity conservation $\square \mathrm{P}, \mathrm{C}$, and T
4.8 Algebraic Derivation of the Hydrogen Spectrum ..... 154
Runge-Lenz vector $\square S O(3) \otimes S O(3)$ commutation relations $\square$ Energy levelsScattering states $\square$ Four-dimensional interpretation
4.9 The Rigid Rotator ..... 158
Laboratory and body-fixed coordinates $\square$ Rotational energy $\square$ Moment-of-inertia ten- sor $\square$ Body-fixed angular momentum operator $\square$ Energy levels of symmetric rotators $\square$ Energy levels of general rotators $\square$ Rotator wave functions $\square$ Rotation representation $D_{M^{\prime} M}^{J}(\mathrm{R}) \square$ Orthohydrogen and parahydrogen $\square$ Estimated energies
Problems ..... 167
5 APPROXIMATIONS FOR ENERGY EIGENVALUES ..... 169
5.1 First-Order Perturbation Theory ..... 169
Non-degenerate case: first-order energy and state vector $\square$ Degenerate case: first-orderenergy, ambiguity in first-order state vector $\square$ A classical analog
5.2 The Zeeman Effect ..... 174
Gyromagnetic ratio $\square$ Landé $g$-factor $\square$ Sodium D lines $\square$ Normal and anomalous Zeeman effect $\square$ Paschen-Back effect
5.3 The First-Order Stark Effect ..... 179Mixing of $2 s_{1 / 2}$ and $2 p_{1 / 2}$ states $\square$ Energy shift for weak fields $\square$ Energy shift forstrong fields
5.4 Second-Order Perturbation Theory ..... 183Non-degenerate case: second-order energy and state vector $\square$ Degenerate case: second-order energy, removal of ambiguity in first-order state vector $\square$ Ultraviolet and infrareddivergences $\square$ Closure approximation $\square$ Second-order Stark effect
5.5 The Variational Method ..... 188
Upper bound on ground state energy $\square$ Excited states $\square$ Approximation to state vectors $\square$ Virial theorem $\square$ Other states
5.6 The Born-Oppenheimer Approximation ..... 191
Reduced Hamiltonian $\square$ Hellmann-Feynman theorem $\square$ Estimate of corrections $\square$ Electronic, vibrational, and rotational modes $\square$ Effective theories
5.7 The WKB Approximation ..... 198
Approximate solutions $\square$ Validity conditions $\square$ Turning points $\square$ Energy eigenvalues - one dimension $\square$ Energy eigenvalues - three dimensions
5.8 Broken Symmetry ..... 205
Approximate solutions for thick barriers $\square$ Energy splitting $\square$ Decoherence $\square$ Oscillations $\square$ Chiral molecules
5.9 Van der Waals Forces ..... 208
Expansion of interaction in spherical harmonics $\square$ Second-order perturbation theory
Dominance of the dipole-dipole term
Problems ..... 212
6 APPROXIMATIONS FOR TIME-DEPENDENT PROBLEMS ..... 214
6.1 First-Order Perturbation Theory ..... 214
Differential equation for amplitudes Approximate solution
6.2 Monochromatic Perturbations ..... 215
Transition rate $\square$ Fermi golden rule $\square$ Continuum final states
6.3 Ionization by an Electromagnetic Wave ..... 218
Nature of perturbation Conditions on frequency

$\square$
Ionization rate of hydrogen ground state
6.4 Fluctuating Perturbations ..... 220
Stationary fluctuations $\square$ Correlation function $\square$ Transition rate
6.5 Absorption and Stimulated Emission of Radiation ..... 222
Dipole approximation $\square$ Transition rates $\square$ Energy density of radiation $\square B$-coefficients $\square$ Spontaneous transition rate
6.6 The Adiabatic Approximation ..... 224Slowly varying Hamiltonians $\square$ Dynamical phase $\square$ Non-dynamical phase $\square$Degenerate case
6.7 The Berry Phase ..... 227
Geometric character of the non-dynamical phase $\square$ Closed curves in parameter space$\square$ General formula for the Berry phase $\square$ Spin in a slowly varying magnetic field
6.8 Rabi Oscillations and Ramsey Interferometers ..... 232
Two-state approximation $\square$ Rabi oscillation frequency $\square$ The Ramsey trick $\square$ Precision measurements of transition frequencies
6.9 Open Systems ..... 237
Linear non-unitary evolution of density matrix $\square$ Properties of evolution kernel $\square$ Expansion of kernel in eigenmatrices $\square$ Rate of change of density matrix $\square$ Positivity $\square$ Complete positivity $\square$ Lindblad equation $\square$ Increasing entropy $\square$ Measurement
7 POTENTIAL SCATTERING ..... 247
7.1 In-States ..... 247
Wave packets Lippmann-Schwinger equation
Wave packets at early times Spread of wave packet
7.2 Scattering Amplitudes ..... 252
Green's function for scattering $\square$ Definition of scattering amplitude
Wave packet at late times $\square$ Differential cross section
7.3 The Optical Theorem ..... 255
Derivation of theorem $\square$ Conservation of probability $\square$ Diffraction peak
7.4 The Born Approximation ..... 258
First-order scattering amplitude $\square$ Scattering by shielded Coulomb potential
7.5 Phase Shifts ..... 260
Partial wave expansion of plane wave P Partial wave expansion of "in" wave function ..... - Partial wave expansion of scattering amplitude $\square$ Scattering cross section $\square$ Scattering length and effective range
7.6 Resonances ..... 264Thick barriers $\square$ Breit-Wigner formula $\square$ Decay rate $\square$ Alpha decay $\square$ Ramsauer-Townsend effect
7.7 Time Delay ..... 268
Wigner formula $\square$ Causality
7.8 Levinson's Theorem ..... 270
Conservation of discrete states $\square$ Growth of phase shift
7.9 Coulomb Scattering ..... 271
Separation of wave function $\square$ Kummer functions $\square$ Scattering amplitude7.10 The Eikonal Approximation273WKB approximation in three dimensions $\square$ Initial surface $\square$ Ray paths $\square$ Calculationof phase $\square$ Calculation of amplitude $\square$ Application to potential scattering $\square$ Classicalcross section $\square$ Phase of scattering amplitude $\square$ Long-range forces
Problems ..... 281
8 GENERAL SCATTERING THEORY ..... 282
8.1 The S-Matrix ..... 282
"In" and "out" states $\square$ Wave packets at early and late times $\square$ Definition of the S-matrix$\square$ Normalization of the "in" and "out" states $\square$ Unitarity of the S-matrix
8.2 Rates ..... 287
Transition probabilities in a spacetime box Decay rates $\square$ Cross sections
Relative velocity $\square$ Connection with scattering amplitudes $\square$ Final states
8.3 The General Optical Theorem ..... 291
Optical theorem for multiparticle states $\square$ Two-particle case
8.4 The Partial Wave Expansion ..... 292
Discrete basis for two-particle states $\square$ Two-particle S-matrix $\square$ Total and scattering cross sections $\square$ Phase shifts $\square$ High-energy scattering
8.5 Resonances Revisited ..... 299S-matrix near a resonance energy $\square$ Consequences of unitarity $\square$ General Breit-Wignerformula $\square$ Total and scattering cross sections $\square$ Branching ratios
8.6 Old-Fashioned Perturbation Theory ..... 303
Perturbation series for the S-matrix $\square$ Functional analysis $\square$ Square-integrable kernel $\square$ Sufficient conditions for convergence $\square$ Upper bound on binding energies $\square$ Distorted- wave Born approximation $\square$ Coulomb suppression
8.7 Time-Dependent Perturbation Theory ..... 309
Time-development operator $\square$ Interaction picture $\square$ Time-ordered products $\square$ Dyson perturbation series $\square$ Lorentz invariance $\square$ "In-in" formalism
8.8 Shallow Bound States ..... 315
Low equation $\square$ Low-energy approximation $\square$ Solution for scattering length Neutron-proton scattering $\square$ Solution using Herglotz theorem
8.9 Time Reversal of Scattering Processes ..... 320Time reversal of free-particle states $\square$ Time reversal of in and out states $\square$ Detailedbalance $\square$ Time reversal in Born approximation $\square$ Time reversal in distorted-wave Bornapproximation $\square$ Watson-Fermi theorem
Problems ..... 323
9 THE CANONICAL FORMALISM ..... 325
9.1 The Lagrangian Formalism ..... 326Stationary action $\square$ Lagrangian equations of motion $\square$ Example: spherical coordinates
9.2 Symmetry Principles and Conservation Laws ..... 327Noether's theorem $\square$ Conserved quantities from symmetries of Lagrangian $\square$ Spacetranslation $\square$ Rotations $\square$ Symmetries of action
9.3 The Hamiltonian Formalism ..... 329Time translation and Hamiltonian $\square$ Hamiltonian equations of motion $\square$ Sphericalcoordinates again
Conserved quantities as symmetry generators $\square$ Commutators of canonical variablesand conjugates $\square$ Momentum and angular momentum $\square$ Poisson brackets $\square$ Jacobiidentity
9.5 Constrained Hamiltonian Systems ..... 335
Example: particle on a surface $\square$ Primary and secondary constraints $\square$ First- and second-class constraints $\square$ Dirac brackets $\square$ Application to example
9.6 The Path-Integral Formalism ..... 340
Derivation of the general path integralProblems347
10 CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS ..... 348
10.1 Canonical Formalism for Charged Particles ..... 348
Equations of motion Scalar and vector potentials
Lagrangian ..... Hamiltonian $\square$Commutation relations
10.2 Gauge Invariance ..... 351
Gauge transformations of potentials $\square$ Gauge transformation of Lagrangian $\square$ Gaugetransformation of Hamiltonian $\square$ Gauge transformation of state vector $\square$ Gaugeinvariance of energy eigenvalues
10.3 Landau Energy Levels ..... 353
Hamiltonian in a uniform magnetic field $\square$ Energy levels $\square$ Near degeneracy $\square$ Fermi level $\square$ Periodicity in $1 / B_{z} \square$ Shubnikov-de Haas and de Haas-van Alphen effects
10.4 The Aharonov-Bohm Effect ..... 356
Application of the eikonal approximation $\square$ Interference between alternate ray paths $\square$
Relation to Berry phase $\square$ Effect of field-free vector potential $\square$ Periodicity in the flux
Problems ..... 360
11 THE QUANTUM THEORY OF RADIATION ..... 361
11.1 The Euler-Lagrange Equations ..... 361General field theories $\square$ Variational derivatives of Lagrangian $\square$ Lagrangian density
11.2 The Lagrangian for Electrodynamics ..... 363Maxwell equations $\square$ Charge density and current density $\square$ Field, interaction, andmatter Lagrangians
11.3 Commutation Relations for Electrodynamics ..... 365
Coulomb gauge $\square$ Constraints $\square$ Applying Dirac brackets
11.4 The Hamiltonian for Electrodynamics ..... 368
Evaluation of Hamiltonian $\square$ Coulomb energy $\square$ Recovery of Maxwell's equations
11.5 Interaction Picture ..... 370
Interaction picture operators $\square$ Expansion in plane waves $\square$ Polarization vectors
11.6 Photons ..... 375
Creation and annihilation operators $\square$ Fock space $\square$ Photon energies $\square$ Vacuum energy
$\square$ Photon momentum $\square$ Photon spin $\square$ Varieties of polarization $\square$ Coherent states
11.7 Radiative Transition Rates ..... 380
S-matrix for photon emission $\square$ Separation of center-of-mass motion $\square$ General decayrate $\square$ Electric-dipole radiation $\square$ Electric-quadrupole and magnetic-dipole radiation21 cm radiation $\square$ No $0 \rightarrow 0$ transitions
11.8 Quantum Key Distribution ..... 387
Keys in cryptography $\square$ Using photon polarization: the BB84 protocol $\square$ The eaves- dropper defeated
Problems ..... 390
12 ENTANGLEMENT ..... 392
12.1 Paradoxes of Entanglement ..... 392
The Einstein-Podolsky-Rosen paradox $\square$ The Bohm paradox $\square$ Instantaneous commu-nication?$\square$ Factorization of the evolution kernel $\square$ Entanglement entropy
12.2 The Bell Inequalities ..... 398
Local hidden-variable theories $\square$ Two-spin inequality $\square$ Generalized inequality $\square$ Experimental tests
12.3 Quantum Computation ..... 402Qbits $\square$ Comparison with classical digital computers $\square$ Computation as unitary trans-formation $\square$ Fourier transforms $\square$ Gates $\square$ Reading the memory $\square$ No-copying theorem$\square$ Error correction
AUTHOR INDEX ..... 407
SUBJECT INDEX ..... 412

