"Lectures on Quantum Mechanics must be considered among the very best books on the subject for those who have had a good undergraduate introduction. The integration of clearly explained formalism with cogent physical examples is masterful, and the depth of knowledge and insight that Weinberg shares with readers is compelling." Mark Srednicki, *Physics Today*

Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition, to provide a concise introduction to modern quantum mechanics, in this fully

updated second edition of his successful textbook. Now including six brand new sections covering key topics such as the rigid rotator and quantum key distribution, as well as major additions to existing topics throughout, this revised edition is ideally suited to a one-year graduate course or as a reference for researchers. Beginning with a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach, Weinberg uses his remarkable expertise to elucidate topics such as Bloch waves and band structure, the Wigner-Eckart theorem, magic numbers, isospin symmetry, and general scattering theory. Problems are included at the ends of chapters, with solutions available for instructors at

www.cambridge.org/9781107111660.

New for the second edition:

- The rigid rotator
- Van der Waals forces
- Rabi oscillators and Ramsey interferometers
- Open systems
- Time reversal of scattering processes
- Quantum key distribution



ISBN 978-1-107-11166-0

PREFACE

NOTATION

1 HISTORICAL INTRODUCTION

1.1 Photons

Black-body radiation
Rayleigh–Jeans formula
Planck formula Atomic constants
Photoelectric effect Compton scattering

1.2 Atomic Spectra

Discovery of atomic nuclei \Box Ritz combination principle \Box Bohr quantization condition \Box Hydrogen spectrum \Box Atomic numbers and weights \Box Sommerfeld quantization condition \Box Einstein A and B coefficients \Box Lasers

1.3 Wave Mechanics

De Broglie waves 🗆 Davisson-Germer experiment 🗆 Schrödinger equation

1.4 Matrix Mechanics

Radiative transition rate \Box Harmonic oscillator \Box Heisenberg matrix algebra \Box Commutation relations \Box Equivalence to wave mechanics \Box Quantization of radiation

1.5 Probabilistic Interpretation

Scattering \Box Probability density and current \Box Expectation values \Box Equations of motion \Box Eigenvalues and eigenfunctions \Box Uncertainty principle \Box Born rule for transition probabilities

Historical Bibliography

Problems

30

30

13

page XVII

XX1

24

vii

PARTICLE STATES IN A CENTRAL POTENTIAL 32 2 **Schrödinger Equation for a Central Potential** 2.1 32 Hamiltonian for central potentials Orbital angular momentum operator L Spectrum of $L^2 \square$ Separation of wave function \square Boundary conditions **Spherical Harmonics** 39 2.2 Spectrum of $L_3 \square$ Associated Legendre polynomials \square Construction of spherical harmonics Orthonormality Parity Legendre polynomials **The Hydrogen Atom** 43 2.3 Radial Schrödinger equation Power series solution Laguerre polynomials Energy levels Selection rules

2.4 The Two-Body Problem

Reduced mass
Relative and center-of-mass coordinates
Relative and total momenta
Hydrogen and deuterium spectra

2.5 The Harmonic Oscillator

Separation of wave function \Box Raising and lowering operators \Box Spectrum \Box Normalized wave functions \Box Radiative transition matrix elements

Problems

3 GENERAL PRINCIPLES OF QUANTUM MECHANICS

3.1 States

Hilbert space □ Vector spaces □ Norms □ Completeness and independence □ Orthonormalization □ Probabilities □ Rays □ Dirac notation

3.2 Continuum States

From discrete to continuum states
Normalization
Delta functions
Distributions

3.3 Observables

61

47

49

54

55

55

Operators 🗆 Adjoints 🗆 Matrix representation 🗆 Eigenvalues 🗆 Completeness of eigenvectors 🗆 Schwarz inequality 🗆 Uncertainty principle 🗆 Dyads 🗆 Projection operators 🗆 Density matrix 🗆 Von Neumann entropy 🗆 Disentangled systems

3.4 Symmetries

Unitary operators \Box Wigner's theorem \Box Antiunitary operators \Box Continuous symmetries \Box Commutators

3.5 Space Translation

78

74

Momentum operators
Commutation rules
Momentum eigenstates
Bloch waves
Band structure

Time Translation and Inversion 3.6

Hamiltonians 🗆 Time-dependent Schrödinger equation 🗆 Conservation laws 🗆 Time reversal
Galilean invariance
Boost generator
Time-dependence of density matrix

Interpretations of Quantum Mechanics 3.7

Copenhagen interpretation
Measurement vs. unitary evolution of the density matrix □ Correlation of system and measuring apparatus □ Classical states □ Decoherence □ Stern–Gerlach experiment
Schrödinger's cat
Where does the Born rule come from? □ Instrumentalist interpretations □ Decoherent histories □ Realist interpretations □ Many worlds?
Approach to the Born rule
Conclusion

Problems

102

SPIN ET CETERA

104

ix

82

86

Rotations 4.1

Finite rotations \Box Rotation groups O(3) and SO(3) \Box Action on physical states \Box Infinitesimal rotations
Commutation relations
Total angular momentum
Spin

Angular-Momentum Multiplets 4.2

Raising and lowering operators \Box Spectrum of J^2 and $J_3 \Box$ Spin matrices \Box Pauli matrices $\Box J_3$ -independence \Box Stern–Gerlach experiment

Addition of Angular Momenta 4.3

Choice of basis
Clebsch–Gordan coefficients
Sum rules for coefficients Hydrogen states
Symmetries of coefficients Addition theorem for spherical harmonics \Box 3 *j* symbols \Box More sum rules \Box SU(2) formalism

The Wigner–Eckart Theorem 128 4.4 Operator transformation properties Theorem for matrix elements Parallel matrix elements Photon emission selection rules

4.5 **Bosons and Fermions**

106

112

117

Symmetrical and antisymmetrical states
Connection with spin Hartree approximation
Pauli exclusion principle
Periodic table for atoms
Magic numbers for nuclei
Temperature and chemical potential
Statistics Insulators, conductors, semi-conductors

Internal Symmetries 4.6

Charge symmetry \Box Isotopic spin symmetry \Box Pions $\Box \Delta s \Box$ Strangeness $\Box U(1)$ symmetries $\Box SU(3)$ symmetry

Inversions 4.7

150

141

Space inversion
Orbital parity Intrinsic parity Parity of pions I Violations of parity conservation $\Box P, C, and T$

4.8 Algebraic Derivation of the Hydrogen Spectrum154Runge-Lenz vector \Box SO(3) \otimes SO(3) commutation relations \Box Energy levels \Box Scattering states \Box Four-dimensional interpretation

4.9 The Rigid Rotator 158

Laboratory and body-fixed coordinates \Box Rotational energy \Box Moment-of-inertia tensor \Box Body-fixed angular momentum operator \Box Energy levels of symmetric rotators \Box Energy levels of general rotators \Box Rotator wave functions \Box Rotation representation $D_{M'M}^{J}(\mathbf{R}) \Box$ Orthohydrogen and parahydrogen \Box Estimated energies

Problems

167

5APPROXIMATIONS FOR ENERGY EIGENVALUES1695.1First-Order Perturbation Theory169

Non-degenerate case: first-order energy and state vector \Box Degenerate case: first-order energy, ambiguity in first-order state vector \Box A classical analog

5.2 The Zeeman Effect

Gyromagnetic ratio \Box Landé g-factor \Box Sodium D lines \Box Normal and anomalous Zeeman effect \Box Paschen–Back effect

5.3 The First-Order Stark Effect

Mixing of $2s_{1/2}$ and $2p_{1/2}$ states \Box Energy shift for weak fields \Box Energy shift for strong fields

5.4 Second-Order Perturbation Theory

183

174

179

Non-degenerate case: second-order energy and state vector \Box Degenerate case: second-order energy, removal of ambiguity in first-order state vector \Box Ultraviolet and infrared divergences \Box Closure approximation \Box Second-order Stark effect

5.5 The Variational Method

188

191

Upper bound on ground state energy

Excited states

Approximation to state vectors

□ Virial theorem □ Other states

5.6 The Born–Oppenheimer Approximation

Reduced Hamiltonian \Box Hellmann–Feynman theorem \Box Estimate of corrections \Box Electronic, vibrational, and rotational modes \Box Effective theories

5.7 The WKB Approximation

198

Approximate solutions
Validity conditions
Turning points
Energy eigenvalues –
one dimension
Energy eigenvalues – three dimensions

5.8 Broken Symmetry

205

Approximate solutions for thick barriers \Box Energy splitting \Box Decoherence \Box Oscillations \Box Chiral molecules

5.9 Van der Waals Forces

Expansion of interaction in spherical harmonics \Box Second-order perturbation theory \Box Dominance of the dipole-dipole term

Problems

6 APPROXIMATIONS FOR TIME-DEPENDENT PROBLEMS

6.1 First-Order Perturbation Theory

Differential equation for amplitudes
Approximate solution

6.2 Monochromatic Perturbations

Transition rate
Fermi golden rule
Continuum final states

212

xi

208

214

214

215

218

220

6.3 Ionization by an Electromagnetic Wave

Nature of perturbation \Box Conditions on frequency \Box Ionization rate of hydrogen ground state

6.4 Fluctuating Perturbations

Stationary fluctuations
Correlation function
Transition rate

6.5 Absorption and Stimulated Emission of Radiation222Dipole approximation \Box Transition rates \Box Energy density of radiation \Box *B*-coefficients \Box Spontaneous transition rate

6.6 The Adiabatic Approximation 224 Slowly varying Hamiltonians □ Dynamical phase □ Non-dynamical phase □ Degenerate case

6.7 The Berry Phase

237

246

Geometric character of the non-dynamical phase \Box Closed curves in parameter space \Box General formula for the Berry phase \Box Spin in a slowly varying magnetic field

6.8 Rabi Oscillations and Ramsey Interferometers232Two-state approximation □ Rabi oscillation frequency □ The Ramsey trick □ Precision
measurements of transition frequencies232

6.9 Open Systems

Linear non-unitary evolution of density matrix \Box Properties of evolution kernel \Box Expansion of kernel in eigenmatrices \Box Rate of change of density matrix \Box Positivity \Box Complete positivity \Box Lindblad equation \Box Increasing entropy \Box Measurement

Problems

POTENTIAL SCATTERING 7

In-States 7.1

xii

Wave packets

Lippmann-Schwinger equation
Wave packets at early times Spread of wave packet

Scattering Amplitudes 7.2

Green's function for scattering
Definition of scattering amplitude
Wave packet at late times
Differential cross section

trat-Orsiss Ferministion Theory 255 **The Optical Theorem** 7.3

Derivation of theorem
Conservation of probability
Diffraction peak

The Born Approximation 7.4

First-order scattering amplitude
Scattering by shielded Coulomb potential

252

247

247

258

260

264

Phase Shifts 7.5

Partial wave expansion of plane wave \Box Partial wave expansion of "in" wave function \Box Partial wave expansion of scattering amplitude
Scattering cross section
Scattering length and effective range

Resonances 7.6

Thick barriers
Breit-Wigner formula
Decay rate
Alpha decay
Ramsauer-Townsend effect

Time Delay 7.7

Wigner formula Causality

Levinson's Theorem 7.8

Conservation of discrete states
Growth of phase shift

Coulomb Scattering 7.9

Separation of wave function
Kummer functions
Scattering amplitude

270

268

271

The Eikonal Approximation 7.10

273

WKB approximation in three dimensions
I Initial surface
Ray paths
Calculation of phase \Box Calculation of amplitude \Box Application to potential scattering \Box Classical cross section
Phase of scattering amplitude
Long-range forces

Prob	lems	281
8	GENERAL SCATTERING THEORY	282
8.1	The S-Matrix	282
"In" a	and "out" states \Box Wave packets at early and late times \Box Defin	nition of the S-matrix

□ Normalization of the "in" and "out" states □ Unitarity of the S-matrix

8.2 Rates

Transition probabilities in a spacetime box \Box Decay rates \Box Cross sections \Box Relative velocity
Connection with scattering amplitudes
Final states

The General Optical Theorem 8.3

Optical theorem for multiparticle states
Two-particle case

The Partial Wave Expansion 8.4

Discrete basis for two-particle states
Two-particle S-matrix
Total and scattering cross sections
Phase shifts High-energy scattering

Resonances Revisited 8.5

S-matrix near a resonance energy
Consequences of unitarity General Breit-Wigner formula
Total and scattering cross sections
Branching ratios

299

xiii

287

291

292

Old-Fashioned Perturbation Theory 8.6

Perturbation series for the S-matrix Functional analysis Square-integrable kernel Sufficient conditions for convergence
Upper bound on binding energies
Distortedwave Born approximation
Coulomb suppression

Time-Dependent Perturbation Theory 8.7

Time-development operator
Interaction picture
Time-ordered products
Dyson perturbation series 🗆 Lorentz invariance 🗆 "In-in" formalism

Shallow Bound States 8.8

Low equation \Box Low-energy approximation \Box Solution for scattering length \Box Neutron-proton scattering
Solution using Herglotz theorem

8.9 **Time Reversal of Scattering Processes**

Time reversal of free-particle states \Box Time reversal of *in* and *out* states \Box Detailed balance 🗆 Time reversal in Born approximation 🗆 Time reversal in distorted-wave Born approximation
Watson-Fermi theorem

309

315

320

Problems

THE CANONICAL FORMALISM 9

The Lagrangian Formalism 9.1

Stationary action 🗆 Lagrangian equations of motion 🗆 Example: spherical coordinates

Symmetry Principles and Conservation Laws 327 9.2 Noether's theorem Conserved quantities from symmetries of Lagrangian Space translation Rotations Symmetries of action

The Hamiltonian Formalism 9.3

329

Time translation and Hamiltonian \Box Hamiltonian equations of motion \Box Spherical coordinates again

325

326

9.4 Canonical Commutation Relations

Conserved quantities as symmetry generators \Box Commutators of canonical variables and conjugates \Box Momentum and angular momentum \Box Poisson brackets \Box Jacobi identity

9.5 Constrained Hamiltonian Systems 335

Example: particle on a surface \Box Primary and secondary constraints \Box First- and second-class constraints \Box Dirac brackets \Box Application to example

9.6 The Path-Integral Formalism

Derivation of the general path integral \Box Integrating out momenta \Box The free particle \Box Two-slit experiment \Box Interactions

Problems

10 CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS

340

347

332

10.1 Canonical Formalism for Charged Particles 348

Equations of motion \Box Scalar and vector potentials \Box Lagrangian \Box Hamiltonian \Box Commutation relations

10.2 Gauge Invariance

Gauge transformations of potentials \Box Gauge transformation of Lagrangian \Box Gauge transformation of Hamiltonian \Box Gauge transformation of state vector \Box Gauge invariance of energy eigenvalues

10.3 Landau Energy Levels

Hamiltonian in a uniform magnetic field \Box Energy levels \Box Near degeneracy \Box Fermi level \Box Periodicity in $1/B_z \Box$ Shubnikov–de Haas and de Haas–van Alphen effects

10.4 The Aharonov–Bohm Effect

Application of the eikonal approximation \Box Interference between alternate ray paths \Box Relation to Berry phase \Box Effect of field-free vector potential \Box Periodicity in the flux

353

356

351

Problems



 11
 THE QUANTUM THEORY OF RADIATION
 361

 11.1
 The Euler-Lagrange Equations
 361

 General field theories □ Variational derivatives of Lagrangian □ Lagrangian density
 361

 11.2
 The Lagrangian for Electrodynamics
 363

 Maxwell equations □ Charge density and current density □ Field, interaction, and matter Lagrangians
 363

Contents XV **Commutation Relations for Electrodynamics** 365 11.3 Coulomb gauge Constraints Applying Dirac brackets 368 The Hamiltonian for Electrodynamics 11.4 Evaluation of Hamiltonian Coulomb energy Recovery of Maxwell's equations **Interaction Picture** 370 11.5 Interaction picture operators Expansion in plane waves Polarization vectors 375 Photons 11.6 Creation and annihilation operators Fock space Photon energies Vacuum energy □ Photon momentum □ Photon spin □ Varieties of polarization □ Coherent states **Radiative Transition Rates** 380 11.7

S-matrix for photon emission
Separation of center-of-mass motion
General decay

rate \Box Electric-dipole radiation \Box Electric-quadrupole and magnetic-dipole radiation \Box 21 cm radiation \Box No 0 \rightarrow 0 transitions

11.8 Quantum Key Distribution

Keys in cryptography \Box Using photon polarization: the BB84 protocol \Box The eavesdropper defeated

Problems

N TUTT

12 ENTANGLEMENT

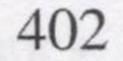
12.1 Paradoxes of Entanglement

The Einstein–Podolsky–Rosen paradox \Box The Bohm paradox \Box Instantaneous communication? \Box Factorization of the evolution kernel \Box Entanglement entropy

12.2 The Bell Inequalities

Local hidden-variable theories \Box Two-spin inequality \Box Generalized inequality \Box Experimental tests

12.3 Quantum Computation



398

387

390

392

392

Qbits \Box Comparison with classical digital computers \Box Computation as unitary transformation \Box Fourier transforms \Box Gates \Box Reading the memory \Box No-copying theorem \Box Error correction

AUTHOR INDEX

407

412

SUBJECT INDEX