Contents

Cover Credit	xiii
Contributors	XV
Preface	xix
Acknowledgments	xxi

1. Basic concepts of thiol chemistry and biology Beatriz Alvarez and Gustavo Salinas

1 Thiols in biology

2 The thiol group confers unique properties to the amino acid cysteine

 1 Thiolates are excellent nucleophiles 1 Thiols can be oxidized Redox versatility of thiols 1 The thiol-disulfide exchange reaction can be catalyzed by proteins of the thioredoxin superfamily The thioredoxin and the glutahione-glutaredoxin systems: Pathways that use the thiol-disulfide exchange reaction as a leitmotiv The concentrations of thiols and oxidized derivatives are under kinetic control Cys diversity in proteins Concluding remarks Acknowledgments References Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Guesto Ferre-Sueta Measuring pKa On the "conservation" of pKa values Acide cysteines and catalytic cysteines, is there a connection? Mucleophilic tatalysis Concluding remarks Mucleophilic eatalysis Concluding remarks Concluding remarks Edements Mucleophilic equipsis Concluding remarks Actional data and the formation of pKa values Concluding remarks Actional conservation" of pKa of a protein cysteine? pH and species distribution Mucleophilic tatalysis Concluding remarks Actional data specific try and species distribution Mucleophilic tatalysis Concluding remarks Actional data specific try and species distribution Mucleophilic tatalysis Concluding remarks Actional data specific try and try an	3 Thiols ionize to thiolates	te to dvaltate and interpret the realts	901
 6 Redox versatility of thiols 7 The thiol-disulfide exchange reaction can be catalyzed by proteins of the thioredoxin superfamily 8 The thioredoxin and the glutahione-glutaredoxin systems: Pathways that use the thiol-disulfide exchange reaction as a leitmotiv 9 The concentrations of thiols and oxidized derivatives are under kinetic control 10 Cys diversity in proteins 11 Concluding remarks 2 Achnowledgments 2 Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity 12 Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity 13 Conservation" of pK_a values 2 Acidic cysteines and catalytic cysteines, is there a connection? 4 What can we learn from the pK_a of a protein cysteine? pH and species distribution 5 Nucleophilicity 6 Nucleophilic catalysis 6 Concluding remarks 7 Mucleophilic actalysis 7 Concluding remarks 7 Mucleophilic actalysis 7 Mucleophilic catalysis 7 Mucleophilic catalysis 7 Mucleophilic actalysis 7 Mucleophilic catalysis 7 Mucleophilic actalysis 7 Mucleophilic catalysis 7 Mucleophilicity 8 Mucleophilic catalysis<th></th><th>ophiles</th><th>0</th>		ophiles	0
 7 The thiol-disulfide exchange reaction can be catalyzed by proteins of the thioredoxin superfamily 8 The thioredoxin and the glutahione-glutaredoxin systems: Pathways that use the thiol-disulfide exchange reaction as a leitmotiv 9 The concentrations of thiols and oxidized derivatives are under kinetic control 10 Cys diversity in proteins 11 Concluding remarks 12 Concluding remarks 13 Concluding remarks 14 Concluding remarks 16 Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity 16 The "conservation" of pK_a values 17 Acidic cysteines and catalytic cysteines, is there a connection? 18 What can we learn from the pK_a of a protein cysteine? pH and species distribution 19 Nucleophilicity 10 Nucleophilic catalysis 10 Concluding remarks 11 Concluding remarks 12 Concluding remarks 13 Concluding remarks 14 Conservation of pK_a and the point of the protein of the "conservation" of pK_a of a protein cysteine? pH and species distribution 14 Nucleophilic catalysis 15 Concluding remarks 16 Concluding remarks 17 Concluding remarks 18 Concluding remarks 19 Concluding remarks 10 Concluding remarks 11 Concluding remarks 12 Concluding remarks 13 Concluding remarks 14 Concluding remarks 15 Concluding remarks 16 Concluding remarks 16 Concluding remarks 17 Concluding remarks 18 Concluding remarks 19 Concluding remarks 10 Concluding remarks 11 Concluding remarks 12 Concluding remarks 13 Concluding remarks 14 Concluding remarks 15 Concluding remarks 16 Concluding remarks 17 Concluding remarks 18 Concluding remarks 19 Concluding remarks 10 Concluding remarks 10 Concluding rem			alo/
 8 The thioredoxin and the glutahione-glutaredoxin systems: Pathways that use the thiol-disulfide exchange reaction as a leitmotiv 9 The concentrations of thiols and oxidized derivatives are under kinetic control 10 Cys diversity in proteins 11 Concluding remarks 12 Concluding remarks 13 Concluding remarks 14 Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity 14 The "conservation" of pKa values 15 Acidic cysteines and catalytic cysteines, is there a connection? 16 Mat can we learn from the pKa of a protein cysteine? pH and species distribution 16 Nucleophilicity 17 Nucleophilic catalysis 18 Concluding remarks 19 Success 10 Conservation 10 Cystems 11 Conservation 12 Cystems 13 Conservation 14 Cystems 15 Conservation 16 Cystems 17 Cystems 18 Conservation 19 Cystems 10 Cystems 10 Cystems 10 Cystems 10 Cystems 10 Cystems 11 Cystems 12 Cystems 13 Cystems 14 Cystems 14 Cystems 15 Cystems 16 Cystems 16 Cystems 17 Cystems 18 Cystems 19 Cystems 10 Cystems 10 Cystems 10 Cystems 10 Cystems 11 Cystems 12 Cystems 13 Cystems 14 Cystems 14 Cystems 15 Cystems 15 Cystems 16 Cystems 17 Cystems 18 Cystems 19 Cystems 19 Cystems 10 Cystems 10 Cystems 10 Cystems 11 Cystems 12 Cystems 13 Cystems 14 Cystems 14 Cystems 15 Cystems 15 Cystems 16 Cystems 17 Cystems 18 Cystems 19 Cystems 19 Cystems 10 Cystems 10 Cystems 10 Cystems 10 Cyst			nala.
 The concentrations of thiols and oxidized derivatives are under kinetic control Cys diversity in proteins Concluding remarks Acknowledgments Ferences Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity The conservation" of pKa values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pKa of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Action of perences 	8 The thioredoxin and the gluta	ahione-glutaredoxin systems: Pathways that use the thiol-disulfide	1(
 Cys diversity in proteins Concluding remarks Concluding remarks Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Measuring pKa On the "conservation" of pKa values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pKa of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Imowledgments 	•		1
 Concluding remarks Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Measuring pKa On the "conservation" of pKa values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pKa of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Concluding remarks Concluding remarks Concluding remarks Concluding remarks 		and omittiged delivatives are different control	1
 Acknowledgments Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Genere-Sueta Measuring pKa On the "conservation" of pKa values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pKa of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Honowledgments 	-		10
 Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity Measuring pKa On the "conservation" of pKa values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pKa of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Inowledgments 	~	logically relevant third oxidants	1'
 Genedo Ferrer-Sueta Measuring pK_a On the "conservation" of pK_a values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Kinowledgments 	-		1'
 Measuring pK_a On the "conservation" of pK_a values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Knowledgments 			
 Measuring pK_a On the "conservation" of pK_a values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks knowledgments 	 Chemical basis of cysteir 	ne reactivity and specificity: Acidity and nucleophilicity	
 Measuring pK_a On the "conservation" of pK_a values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks knowledgments 			
 On the "conservation" of pK_a values Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Acknowledgments Acknowledgments 			
 Acidic cysteines and catalytic cysteines, is there a connection? What can we learn from the pK_a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Knowledgments Ferences 	Measuring pK _a		2
What can we learn from the pK _a of a protein cysteine? pH and species distribution Nucleophilicity Nucleophilic catalysis Concluding remarks Edmowledgments		alues	20
Nucleophilicity Nucleophilic catalysis Concluding remarks Acknowledgments References	Acidic cysteines and catalytic c	systeines, is there a connection?	28
Nucleophilic catalysis Concluding remarks Acknowledgments References	- That can we learn from the pk	Ca of a protein cysteine? pH and species distribution	3
Concluding remarks Acknowledgments References	5 Nucleophilicity	, adultable	3
Acknowledgments References	 Nucleophilic catalysis 		3'
References	Concluding remarks		5
forences	- denowledgments		5
Detection of the exidation products of tiple, Displifter, and suffering an and the first state of the content of the first state of the first stat	Ferences		5
Detection of the exidation products of tilds: Digitides and suffering and an included and the second second and the second secon			
House Shi and Kato S. Canadi			

vi

Contents

3. Computational functional analysis of cysteine residues in proteins Stefano M. Marino, Gustavo Salinas, and Vadim N. Gladyshev

- Introduction
- 2 Computational methods
- 3 Remarks and conclusions References

4. Global approaches for protein thiol redox state detection and quantification Lars I. Leichert

- 1 Introduction
- 2 The chemistry of thiols
- 3 Exploiting thiol chemistry to detect and quantify oxidative thiol modifications
- 4 Differential thiol labeling in MS-based redox proteomics
- General considerations 5 6 Experimental pitfalls 7 What to expect from the results How to evaluate and interpret the results 8 Conclusions 9 Acknowledgments References

89

92

94

96

96

97

5. Thiol oxidation by biologically-relevant reactive species

Ari Zeida and Rafael Radi

1 Introduction	99
2 Biologically relevant thiol oxidants	99
3 One-electron thiol oxidants	101
4 Two-electron thiol oxidants	103
5 Conclusions and perspectives	108
Acknowledgments	108
References	108

What can we learn trought in a protein crash we decide f Wh

6. Thiyl radicals: Formation, properties, and detection

Christian Schöneich

- 1 Introduction
- 2 Formation
- 3 Properties
- 4 Detection
- 5 Conclusions References

7. Detection of the oxidation products of thiols: Disulfides, and sulfenic, sulfinic, and sulfonic acids

Yunlong Shi and Kate S. Carroll

1 Introduction

2 Activity-based detection of cysteine modifications

133

Contents	vii
3 Indirect profiling of cysteine oxidation	136
4 Reaction-based profiling of cysteine OxiPTMs with chemoselective probes	138
5 Profiling of protein sulfonic acids (-SO ₃ H)	147
6 Conclusions and outlook	148
References	149
8. Biochemistry and detection of S-nitrosothiols	
Matías N. Möller and Ana Denicola	
1 Introduction	153
2 Formation of RSNO	155
3 Other important reactions of RSNO	158
4 Detection of RSNO	160
5 RSNO in physiology	165
6 Concluding remarks	170
Acknowledgments	171

References

9. Thiol modification and signaling by biological electrophiles

Francisco J. Schopfer and Dario A. Vitturi

1 Introduction	177
2 Biological electrophiles	180
3 Determinants and modulators of electrophilic signaling	183
4 Summary	190
References	190
10. Thioredoxin and glutathione reductases Elias S.J. Armér	
1 Thioredoxin reductases and glutathione reductases—The simple picture	197
2 Thioredoxin reductases and glutathione reductases—Redundancy and higher complexity	199
3 Inhibition of thioredoxin reductases for therapeutic purposes	204
4 Concluding remarks-Biological and medical importance of thioredoxin reductases	
and glutathione reductases	208
Acknowledgments	208

References

11. Functional plasticity in the thioredoxin family: FeS-thio- and glutaredoxins Carsten Berndt, Christina Wilms, Yana Bodnar, Manuela Gellert, and Christopher Horst Lillig

Redox signaling and the thioredoxin family of protein redoxins
 FeS-redoxins
 Concluding remarks
 References

209

12. Glutathione and glutathione-dependent enzymes Marcel Deponte

1 Glutathione properties, concentrations, and ideologies

2 De novo synthesis, regeneration, and degradation of glutathione

viii Contents	
 3 Physiological functions of glutathione 4 Conclusion Acknowledgments References 13. Thiol- and selenol-based peroxidases: Structure and contemport 	248 260 261 261
Madia Trujillo, Carlos A. Tairum, Marcos Antonio de Oliveira, and Luis E.S. Netto	atarytic properties
 Introduction Peroxiredoxins Glutathione peroxidases Organic hydroperoxide resistance protein (Ohr)/osmotically inducit Final remarks Acknowledgments References 	277 278 286 ble protein C (OsmC) 292 295 296 296
References	290

14. Thiol peroxidase-based redox relays	
Deepti Talwar and Tobias P. Dick	
1 The conundrum of selective and efficient protein thiol oxidation	307
2 Thiol peroxidase-based redox relays	309
3 The Prx2-STAT3 redox relay paradigm	315
4 Conclusion	318
References	318
15. Compartmentalized disulfide bond formation pathways	
Konstantin Weiss, Julia Racho, and Jan Riemer	
1 Disulfide bonds	321
2 Principles of disulfide bond formation during oxidative protein folding	322
3 Disulfide bond formation in the ER	328
4 Disulfide bond formation in the IMS	330
5 Reducing pathways in the ER	552
o Reducing pathways in the IMS	
7 Conclusions	335

16. Disulfide bond formation in Escherichia coli

Bruno Manta, Emily Lundstedt, Augusto Garcia, James B. Eaglesham, and Mehmet Berkmen

1	Disulfide bond formation and oxidative folding	341
2	The Escherichia coli Dsb system	342
3	Diversity of disulfide bond formation pathways in bacteria	356
4	Engineering Escherichia coli for disulfide bond formation	358
5	Disulfide-bond engineering for protein stability	359
6	Future perspectives for Dsb system research	360
R	eferences	361

Sectors Pounds Christing William Name Boomer

Contents	ix
17. Thiol-based redox probes	
Jannik Zimmermann and Bruce Morgan	
1 Introduction	373
2 Fundamental principles of genetically encoded redox sensors	373
3 Probes for monitoring small molecule thiols	381
4 Probes for monitoring peroxides	387
5 Probes for other thiol species	390
6 Probes for monitoring redox enzyme activity	391
7 Which probe should I use?	394
8 What remains to be done?	395
References	396
Further reading	403

18. Selenocysteine-containing proteins

Marco Mariotti and Vadim N. Gladyshev

1 Selenocysteine, the 21st amino acid	405
2 The selenocysteine pathway	405
3 Why selenocysteine?	408
4 Families of selenoproteins	411
5 Evolution of selenocysteine	412
6 Concluding remarks	417
Acknowledgments	418
References	418
10 0 1 1	

19. Overview of cysteine metabolism

Sebastián Carballal and Ruma Banerjee

- Sources of cysteine
- Cysteine catabolism
- 3 Cysteine posttranslational modifications References

20. Hydrogen sulfide and persulfides

Ernesto Cuevasanta, Dayana Benchoam, Matías N. Möller, Sebastián Carballal, Ruma Banerjee, and Beatriz Alvarez

- Hydrogen sulfide and persulfides: Long-lost thiol relatives_
- Biological formation of H₂S
- Biologically relevant physical and chemical properties of H₂S
- In vivo decay of H₂S 4
- H₂S quantification methods 5
- Persulfides as potential transducers of H₂S signaling 6
- Pathways for persulfide formation
- The unique chemistry of persulfides 8
- Detection of protein persulfides 9
- 10 Final considerations on H₂S signaling References

21. The role of thiols in iron-sulfur cluster biogenesis	
Tirthankar Bandyopadhyay and Caryn E. Outten	
	105
1 Introduction	487
2 A basic blueprint for Fe-S cluster biogenesis	488
3 The GSH-binding transporter Atm1 exports sulfur intermediates for cytosolic Fe-S cluster	
biogenesis, iron regulation, and tRNA thiolation pathways	493
4 Fe-S cluster biogenesis in the cytosolic/nuclear compartment of eukaryotes	495
5 CGFS Grxs serve as hubs for cytosolic Fe-S cluster trafficking and iron regulation pathways	496
6 Alternative LMW thiols are implicated in Fe-S cluster biogenesis pathways	497
7 Summary and conclusions	499
Acknowledgments	499
References	499
22. Thiol-based redox control in chloroplasts	

1

Contents

Linda de Bont, Jean-Pierre Jacquot, and Nicolas Rouhier

X

1 Introduction	507
2 Control of redox homeostasis in chloroplasts by thiol-based systems	508
3 Redox regulation of the chloroplastic metabolism	518
4 Protein oxidation in response to day-night transition	523
5 Conclusions	524
References	525
23. Sugar-based cysteine thiols recruited for oxidative stress defense	
and redox regulation	
Daria Ezeriņa and Joris Messens	
1 Introduction	533
2 Biosynthesis of sugar-based LMW thiols	536
3 Biophysical and biochemical properties of mycothiol and bacillithiol	537
4 Protective roles of BSH and MSH	538
5 Posttranslational modification by sugar-based LMW thiols-The S-thiolomes	545
6 From enzymes to tools: Mrx- and Brx-based biosensors to dynamically visualize MSH/MSSM and	
BSH/BSSB changes in bacteria	547
7 Conclusion	550

References

24. Polyamine-based thiols in pathogens Marcelo A. Comini

1	Polyamine-based thiols and oddities of nature	555
2	"To adapt or not to adapt?" this was the question for the thiol-redox systems	557
3	Thiol-dependent redox pathways in trypanosomatids	559
4	Monoglutathionylspermidine in Proteobacteria	571
5	Concluding remarks	572
Acknowledgments		573
References		573

Contents

25. Thiols in blood

Lucía Turell, Matías N. Möller, Florencia Orrico, Lía M. Randall, Martina Steglich, Sebastián Villar, Ana Denicola, and Leonor Thomson

1 Bloo	d	586
2 Bloo	od as a source and a sink of oxidants	587
3 Thio	ols in blood cells	589
4 Thio	ols in plasma	599
5 Cross	sstalk between plasma and blood cell thiols	603
6 Over	rall picture of thiols in blood	604
References		605

26. A thiol chemistry perspective on redox medicine Tom E. Forshaw, Allen W. Tsang, and Cristina M. Furdui

Endogenous protein and low melocular weight thield

I Endogenous protein and low molecular weight thiols	017	
2 Thiols in cellular and organism redox communication	623	
3 Thiol therapeutics: Drugs and protein targets	625	
4 Analysis of redox modifications at thiols and other sulfur compounds	627	
5 Redox systems biology: Bioinformatics and computational approaches	632	
References	635	
	1	
27. Therapeutic applications of low-molecular-weight thiols and selenocompour	nds	
Pablo A. Nogara, Cláudia S. Oliveira, Meire E. Pereira, Marco Bortoli, Laura Orian, Michael Aschner,		
and João B.T. Rocha		
	~ ~ ~ ~	
1 Introduction	643	
2 Selenium vs sulfur: The chemical point of view	644	
3 The limitations of LMW-Se as mimics of Selenoproteins	644	
4 Organoselenium molecules: Focus on Ebselen, Ethaselen, and Diphenyl diselenide	647	
5 Modulation of KEAP1-NRF2 by Organoselenium molecules	653	
6 Therapeutic use of LMW-SH	656	
7 Conclusions	665	
Acknowledgments	665	

- Acknowledgments
- References

28. Thiol targets in drug development to combat bacterial infections Verena Nadin Fritsch and Haike Antelmann Introduction 2 Thiol targets in the development of antimicrobial compounds 3 Conclusion Acknowledgments References Index

665