XV

9

17

20

23

34

2.5.1 Stationary Wave Freith, with Arbitrary Longittiliant
 2.5.1 Stationary Wave Freith, with Arbitrary Longittiliant
 3.601 Equal Encouracy University Planms and Stationary Wave Freide with Arbitrary houghtilinal? A
 801 2.5.2 Stationary Wave Freide with Arbitrary houghtilinal? A
 801 Stationary Wave Freide with Arbitrary houghtilinal? A
 801 Provide Alsorbing Media with Arbitrary houghtilinal? A
 801 Stationary Wave Freide with Arbitrary houghtilinal? A
 801 Provide Alsorbing Media Arbitrary houghtilinal? A

Contents

11 Fulsed Seams and Amr MesSigner Shutter Diffraction Beams (and Amr MesSigner Shutter) In the Main 112.1

CONTRIBUTORS

PREFACE

- 1 Localized Waves: A Historical and Scientific Introduction Erasmo Recami, Michel Zamboni-Rached, and Hugo E. Hernández-Figueroa
 - 1.1 General Introduction
 1.2 More Detailed Information

 1.2.1 Localized Solutions

 Appendix: Theoretical and Experimental History

 Historical Recollections: Theory
 X-Shaped Field Associated with a Superluminal Charge
 A Glance at the Experimental State of the Art

 References

2	Stru App Mich	cture of Nondiffracting Waves and Some Interesting lications	43
	Hug	o E. Hernández-Figueroa	
	2.1	Introduction	43
	2.2	Spectral Structure of Localized Waves	44
		2.2.1 Generalized Bidirectional Decomposition	46
	2.3	Space-Time Focusing of X-Shaped Pulses	54
		2.3.1 Focusing Effects Using Ordinary X-Waves	55
	2.4	Chirped Optical X-Type Pulses in Material Media	57
		2.4.1 Example: Chirped Optical X-Type Pulse in Bulk	
		Fused Silica	62

vi CONTENTS

2.5	Model	ing the Shape of Stationary Wave Fields: Frozen Waves	63
	2.5.1	Stationary Wave Fields with Arbitrary Longitudinal	
		Shape in Lossless Media Obtained by Superposing	
		Equal-Frequency Bessel Beams	63
	2.5.2	Stationary Wave Fields with Arbitrary Longitudinal	
		Shape in Absorbing Media: Extending the Method	70
Refe	erences		76

3 Two Hybrid Spectral Representations and Their Applications to the Derivations of Finite-Energy Localized Waves and Pulsed Beams

Ioannis M. Besieris and Amr M. Shaarawi

3.1 Introduction

97

79

3.1	Introduction	19
3.2	Overview of Bidirectional and Superluminal	
	Spectral Representations	80
	3.2.1 Bidirectional Spectral Representation	81
al (Inh	3.2.2 Superluminal Spectral Representation	83
3.3	Hybrid Spectral Representation and Its Application	
	to the Derivation of Finite-Energy X-Shaped	
	Localized Waves	84
	3.3.1 Hybrid Spectral Representation	84
	3.3.2 (3 + 1)-Dimensional Focus X-Wave	85
	3.3.3 (3 + 1)-Dimensional Finite-Energy X-Shaped	
	Localized Waves	86
3.4	Modified Hybrid Spectral Representation and Its Application	
	to the Derivation of Finite-Energy Pulsed Beams	89
	3.4.1 Modified Hybrid Spectral Representation	89
	3.4.2 (3 + 1)-Dimensional Splash Modes and Focused	
	Pulsed Beams	89
3.5	Conclusions	93

References	93

4 Ultrasonic Imaging with Limited-Diffraction Beams Jian-yu Lu

4.1	Introd	uction	97
4.2	Funda	mentals of Limited-Diffraction Beams	99
	4.2.1	Bessel Beams	99
	4.2.2	Nonlinear Bessel Beams	101
	4.2.3	Frozen Waves	101
	4.2.4	X-Waves	101
	4.2.5	Obtaining Limited-Diffraction Beams with Variable	
		Transformation	102

CONTENTS vii

.

		4.2.6	Limited-Diffraction Solutions to the Klein–Gordon	103
		4.2.7	Limited-Diffraction Solutions to the Schrödinger	105
			Equation	106
		4.2.8	Electromagnetic X-Waves	108
		4.2.9	Limited-Diffraction Beams in Confined Spaces	109
		4.2.10	X-Wave Transformation	114
		4.2.11	Bowtie Limited-Diffraction Beams	115
		4.2.12	Limited-Diffraction Array Beams	115
		4.2.13	Computation with Limited-Diffraction Beams	115
	4.3	Applic	ations of Limited-Diffraction Beams	116
		4.3.1	Medical Ultrasound Imaging	116
		4.3.2	Tissue Characterization (Identification)	116
		4.3.3	High-Frame-Rate Imaging	116
		4.3.4	Two-Way Dynamic Focusing	116
		4.3.5	Medical Blood-Flow Measurements	117
		4.3.6	Nondestructive Evaluation of Materials	117
		4.3.7	Optical Coherent Tomography	117
		4.3.8	Optical Communications	117
		4.3.9	Reduction of Sidelobes in Medical Imaging	117
	4.4	Conclu	asions	117
	Refe	erences		118
5	Pro	pagatio	n-Invariant Fields: Rotationally Periodic and	
	Anis	sotropio	c Nondiffracting Waves	129
	Jan	ne Salo	and Ari T. Friberg	
	5.1	Introdu	uction	129
	2.1	5.1.1	Brief Overview of Propagation-Invariant Fields	130
		5.1.2	Scope of This Chapter	133
	52	Rotati	onally Periodic Wayes	134
	5.2	521	Fourier Representation of General RPWs	135
		522	Special Propagation Symmetries	135
		523	Monochromatic Waves	136
		524	Pulsed Single-Mode Waves	138
		525	Discussion	142
	53	Nondi	ffracting Wayas in Anisotropic Crystals	142
	5.5	5 3 1	Depresentation of Anisotropic Mondiffracting Wayes	142
		532	Effects Due to Anisotrony	145
	Nau	533	Acoustic Generation of NDWs	1/18
		531	Discussion	140
	5.4	0.5.4		150
	5.4 D.f	Conclu	usions	150
	Refe	erences		151

viii CONTENTS

6	Bess Dan	sel X-Wave Propagation tiela Mugnai and Iacopo Mochi	159
	6.1	Introduction	159
	6.2	Optical Tunneling: Frustrated Total Reflection 6.2.1 Bessel Beam Propagation into a Layer:	160
		6.2.2 Oblique Incidence	160
	6.3	Free Propagation	169
	0.0	6.3.1 Phase, Group, and Signal Velocity: Scalar	107
		 Approximation 6.3.2 Energy Localization and Energy Velocity: 	169
		A Vectorial Treatment	172
	6.4 Dof	Space–Time and Superluminal Propagation	180
	Kelt	erences	101
7	Line Kaid	ear-Optical Generation of Localized Waves to Reivelt and Peeter Saari	185
	7.1	Introduction	185
	7.2	Definition of Localized Waves	186
	7.3	The Principle of Optical Generation of LWs	191
	7.4	Finite-Energy Approximations of LWs	193
	7.5	Physical Nature of Propagation Invariance of Pulsed Wave Fields	195
	76	Experiments	198
	1.0	7.6.1 LWs in Interferometric Experiments	198
		7.6.2 Experiment on Optical Bessel X-Pulses	200
		7.6.3 Experiment on Optical LWs	203
	7.7	Conclusions	211
	Refe	erences	213
8	Opt	ical Wave Modes: Localized and Propagation-Invariant	
	Way Mig	ve Packets in Optically Transparent Dispersive Media uel A. Porras, Paolo Di Trapani, and Wei Hu	217
	8.1	Introduction	217
	8.2	Localized and Stationarity Wave Modes Within the SVEA	219
		8.2.1 Dispersion Curves Within the SVEA	221
		8.2.2 Impulse-Response Wave Modes	222
	8.3	Classification of Wave Modes of Finite Bandwidth 8.3.1 Phase-Mismatch-Dominated Case: Pulsed Bessel	224
		822 Crown Walacity Mismatch Device 1 Com	226
		Envelope Focus Wave Modes	227

CONTENTS ix

		8.3.3	Group-Velocity-Dispersion-Dominated Case:	220
	0 1	Wowol	Modee with Illtrobrood Dondwidth	229
	0.4	8 4 1	Classification of SEWA Dispersion Curves	231
	85	About	the Effective Frequency Wave Number and Dhase	235
	0.5	Veloci	ty of Wave Modes	236
	8.6	Compa	arison Between Exact, SEWA, and SVEA Wave Modes	238
	8.7	Conclu	isions	240
	Refe	erences		240
299			1.1 Introduction	
9	Non	linear)	X-Waves	243
	Clai	iaio Coi	nti ana Stefano Irillo	
	9.1	Introdu	uction	243
	9.2	NLX N	Model	245
	9.3	Envelo	ope Linear X-Waves	247
		9.3.1	X-Wave Expansion and Finite-Energy Solutions	250
	9.4	Conica	al Emission and X-Wave Instability	252
	9.5	Nonlin	near X-Wave Expansion	255
		9.5.1	Some Examples	255
		9.5.2	Proof	256
		9.5.3	Evidence	257
	9.6	Numer	rical Solutions for Nonlinear X-Waves	257
		9.6.1	Bestiary of Solutions	259
	9.7	Couple	ed X-Wave Theory	262
		9.7.1	Fundamental X-Wave and Fundamental Soliton	264
		9.1.2	Higher-Order Soliton	264
	0.8	Brief I	Peview of Experiments	265
	9.0	981	Angular Dispersion	265
		9.8.2	Nonlinear X-Waves in Ouadratic Media	265
		9.8.3	X-Waves in Self-Focusing of Ultrashort Pulses in	
			Kerr Media	266
	9.9	Conclu	usions	266
	Refe	erences		267
10	Diff	raction	Free Subwavelength Ream Ontics on a	
10	Nan	ometer	r Scale	273
	Serg	ei V. Ku	khlevsky	
	10.1	Tester 1	3.3 Basic Concept of Nondiffracting Beams	272
	10.1	Introd		213
	10.2	Natura	i Spatial and Temporal Broadening of Light Waves	215
	10.3	Diffra	ction-Free Optics in the Overwavelength Domain	281

x CONTENTS

10.4 Diffraction-Free Subwavelength-Beam Optics on a
Nanometer Scale28610.5 Conclusions292Appendix292References293

 11 Self-Reconstruction of Pulsed Optical X-Waves
 299

 Ruediger Grunwald, Uwe Neumann, Uwe Griebner, Günter Steinmeyer,
 Gero Stibenz, Martin Bock, and Volker Kebbel

11.1 Introduction29911.2 Small-Angle Bessel-Like Waves and X-Pulses30011.3 Self-Reconstruction of Pulsed Bessel-Like X-Waves303

	11.4 Nondiffracting Images	306
	11.5 Self-Reconstruction of Truncated Ultrabroadband	
	Bessel–Gauss Beams	307
	11.6 Conclusions	310
	References	311
255	Nonlinear X-Waye Expansion	
12	Localization and Wannier Wave Packets in Photonic Crystals	
	Without Defects	315
	Stefano Longni ana Daviae Janner	
	12.1 Introduction	315
	12.2 Diffraction and Localization of Monochromatic Waves in	
	Photonic Crystals	317
	12.2.1 Basic Equations	317
	12.2.2 Localized Waves	319
	12.3 Spatiotemporal Wave Localization in Photonic Crystals	324
	12.3.1 Wannier Function Technique	325
	12.3.2 Undistorted Propagating Waves in Two- and	220
	Three-Dimensional Photonic Crystals	329
	12.4 Conclusions	334
	References	335
13	Spatially Localized Vortex Structures	339
	Zdeněk Bouchal, Radek Čelechovský, and Grover A. Swartzlander, Jr.	
	13.1 Introduction	339
	13.2 Single and Composite Optical Vortices	342
	13.3 Basic Concept of Nondiffracting Beams	346
	13.4 Energetics of Nondiffracting Vortex Beams	350
	13.5 Vortex Arrays and Mixed Vortex Fields	352
		0.0

CONTENTS xi

13.6 Pseudo-nondiffracting Vortex Fields	354
13.7 Experiments	357
13.7.1 Fourier Methods	357
13.7.2 Spatial Light Modulation	358
13.8 Applications and Perspectives	361
References	363

INDEX

367

townis M. Resieris, The Bradley Department of Electrical and Computer Engineering, Virginia Polytochnic Iootoons and State University Blacksburg, Virginia Martin Bock, Muz-Born-Institute for Nonlinear Optics and Shipt-Palse Spectroscopy, Berlin, Germany

Edeneli Bouchal, Department of Optics, Patacky University, Olomour, Crech Republic

Radek Celectrowský. Department of Optics, Palacky University, Olomouc, Czech Republic

Claudio Confly Research Center Enrich Permit Rome Italy, and Romatoh Center SOFT INFM CNR, University La Saginara, Rome, italy

Paolo Di Trapini, Dipartimento di Fisica o Matematica, Universito degli Studi dell'Insiloria sede di Como, Como, Italy

Art T. Friberg, Department of Microslectronics and Applied Reycles, Royal Institute of Technology, Kima, Sweden,

Liwe Griebner, Max-Born-Institute for Monimum Optics and Short-Poise Spectroscopy, Berlin, Germany

Ruediger Gronwald, Max-Born Institute for Nonlinear Optics and Shair-Polse Spectroscopy, Berlin, Germany

Hargo E. Hernandist Eigenna, Faculdade de Engenharia Illétrica e de Computação, Departomento de Microoalle o Optica, Universidado Estadad de Compinar, Campinan, SP, Brazil

Wei Ha, Laboratory of Thotonic Information Technology, School for Information and Optoelectronic Science and Technology, South China Normal University, Guargebou, P. R. China

Davide Janner, Dipartimento di Fisica, Politomileo di Millato, Milas, Italy