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A Few Questions Considered in
The Geometry of Physics '

1. How is the air pressure in an irregular soap 
bubble related to its curvature? Which 
curvature? (p. 227)

2. How does the observed fact that there are 
nearby thermodynamic states that cannot be 
connected adiabatically imply the existence of 
entropy, and why does entropy increase? 
(p. 183)

3. How does special relativity show that the 
magnetic flux law div B=0 implies Faraday’s 
law, and that Gauss’ law implies Ampere
Maxwell’s? (p.200)

4. How does Weyl’s “principle of gauge 
invariance” lead to the conservation of electric 
charge in quantum theory? (p. 536)

5. How does algebraic topology influence whether 
one can maintain an electric current in a closed 
wire loop that sits in a curved three-dimensional 
space? (p.122), and how does the topology of a 
configuration space influence the existence of 
periodic motions in a dynamical system? 
(pp. 284 and 331)

6. Gauss invented “intrinsic” curvature (p. 232) 
and equated it to his “extrinsic” curvature for a 
surface in Euclidean space; how does Einstein’s 
general relativity generalize this? (p. 318)

7. How are properties of fluid flows (Euler’s 
equations, circulation, vorticity, Woltjer’s 
theorem of magnetohydrodynamics) described 
via the Lie derivative? (p.144)

8. In what sense is a full rotation about an axis 
“something,” whereas two full rotations is 
“nothing,” and how is this related to Dirac’s 
equation? (pp.499 and 517)

9. What was the original quark model of 
elementary particle physics and how does Lie 
group theory relate the masses of the pion, eta, 
and kaon mesons in this model? (p.651)
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