Table of Contents

CONTRIBUTING AUTHORS	хi
PREFACE	xiii
JUDGE: A CASE-BASED REASONING SYSTEM William M. Bain	1
CHANGING LANGUAGE WHILE LEARNING RECURSIVE DESCRIPTIONS FROM EXAMPLES Ranan B. Banerji	5
LEARNING BY DISJUNCTIVE SPANNING Gary L. Bradshaw	11
TRANSFER OF KNOWLEDGE BETWEEN TEACHING AND LEARNING SYSTEMS P. Brazdil	15
SOME APPROACHES TO KNOWLEDGE ACQUISITION Bruce G. Buchanan	19
ANALOGICAL LEARNING WITH MULTIPLE MODELS Mark H. Burstein	25
THE WORLD MODELERS PROJECT: OBJECTIVES AND SIMULATOR ARCHITECTURE Jaime Carbonell and Greg Hood	29
THE ACQUISITION OF PROCEDURAL KNOWLEDGE THROUGH INDUCTIVE LEARNING Kaihu Chen	35
LEARNING STATIC EVALUATION FUNCTIONS BY LINEAR REGRESSION Jens Christensen	39
PLAN INVENTION AND PLAN TRANSFORMATION Gregg C. Collins	43
A BRIEF OVERVIEW OF EXPLANATORY SCHEMA ACQUISITION Gerald Dejong	47
THE EG PROJECT: RECENT PROGRESS Thomas G. Dietterich	51

LEARNING CAUSAL RELATIONS Richard J. Doyle	55
FUNCTIONAL PROPERTIES AND CONCEPT FORMATION J. Daniel Easterlin	59
EXPLANATION-BASED LEARNING IN LOGIC CIRCUIT DESIG Thomas Ellman	63
A PROPOSED METHOD OF CONCEPTUAL CLUSTERING STRUCTURED AND DECOMPOSABLE OBJECTS Douglas Fisher	FOR 67
EXPLOITING FUNCTIONAL VOCABULARIES TO LEASTRUCTURAL DESCRIPTIONS Nicholas S. Flann and Thomas G. Dietterich	ARN 71
COMBINING NUMERIC AND SYMBOLIC LEARN TECHNIQUES Richard H. Granger, Jr. and Jeffrey C. Schlimmer	JING 75
LEARNING BY UNDERSTANDING ANALOGIES Russell Greiner	81
ANALOGICAL REASONING IN THE CONTEXT OF ACQUIR PROBLEM SOLVING EXPERTISE Rogers Hall	RING 85
PLANNING AND LEARNING IN A DESIGN DOMAIN: PROBLEMS PLAN INTERACTIONS Kristian J. Hammond	THE 89
INFERENCE OF INCORRECT OPERATORS Haym Hirsh and Derek Sleeman	93
A CONCEPTUAL FRAMEWORK FOR CONCIDENTIFICATION Robert C. Holte	EPT 99
NEURAL MODELING AS ONE APPROACH TO MACH LEARNING Greg Hood	HINE 103
STEPS TOWARD BUILDING A DYNAMIC MEMORY Larry Hunter	109

X .

LEARNING BY COMPOSITION Glenn A. Iba	115
KNOWLEDGE ACQUISITION: INVESTIGATIONS AND GENERAL PRINCIPLES Gary S. Kahn	119
PURPOSE-DIRECTED ANALOGY: A SUMMARY OF CURRENT RESEARCH Smadar Kedar-Cabelli	123
DEVELOPMENT OF A FRAMEWORK FOR CONTEXTUAL CONCEPT LEARNING Richard M. Keller	127
ON SAFELY IGNORING HYPOTHESES Kevin T. Kelly	133
A MODEL OF ACQUIRING PROBLEM SOLVING EXPERTISE Dennis Kibler and Rogers P. Hall	137
ANOTHER LEARNING PROBLEM: SYMBOLIC PROCESS PREDICTION Heedong Ko	141
LEARNING AT LRI ORSAY Yves Kodratoff	145
COPER: A METHODOLOGY FOR LEARNING INVARIANT FUNCTIONAL DESCRIPTIONS Mieczyslaw M. Kokar	151
USING EXPERIENCE AS A GUIDE FOR PROBLEM SOLVING Janet L. Kolodner and Robert L. Simpson	155
HEURISTICS AS INVARIANTS AND ITS APPLICATION TO LEARNING Richard E. Korf	161
COMPONENTS OF LEARNING IN A REACTIVE ENVIRONMENT Pat Langley, Dennis Kibler, and Richard Granger	167
THE DEVELOPMENT OF STRUCTURES THROUGH INTERACTION Robert W. Lawler	173

COMPLEX LEARNING ENVIRONMENTS: HIERARCHIES AND THE USE OF EXPLANATION Michael Lebowitz	179
PREDICTION AND CONTROL IN AN ACTIVE ENVIRONMENT Alan J. MacDonald	183
BETTER INFORMATION RETRIEVAL THROUGH LINGUISTIC SOPHISTICATION Michael L. Mauldin	189
MACHINE LEARNING RESEARCH IN THE ARTIFICIAL INTELLIGENCE LABORATORY AT ILLINOIS Ryszard S. Michalski	193
OVERVIEW OF THE PRODIGY LEARNING APPRENTICE Steven Minton	199
A LEARNING APPRENTICE SYSTEM FOR VLSI DESIGN Tom M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg	203
GENERALIZING EXPLANATIONS OF NARRATIVES INTO SCHEMATA Raymond J. Mooney	207
WHY ARE DESIGN DERIVATIONS HARD TO REPLAY? Jack Mostow	213
AN ARCHITECTURE FOR EXPERIENTIAL LEARNING Michael C. Mozer, Klaus P. Gross	219
KNOWLEDGE EXTRACTION THROUGH LEARNING FROM EXAMPLES Igor Mozetic	227
LEARNING CONCEPTS WITH A PROTOTYPE-BASED MODEL FOR CONCEPT REPRESENTATION Donna J. Nagel	233
RECENT PROGRESS ON THE MATHEMATICIAN'S APPRENTICE PROJECT Paul O'Rorke	237
ACQUIRING DOMAIN KNOWLEDGE FROM FRAGMENTS OF ADVICE Bruce W. Porter, Ray Bareiss, and Adam Farquhar	241

ix	
CALM: CONTESTATION FOR ARGUMENTATIVE LEARNING MACHINE J. Quinqueton and J. Sallantin	247
DIRECTED EXPERIMENTATION FOR THEORY REVISION AND CONCEPTUAL KNOWLEDGE ACQUISITION Shankar A. Rajamoney	255
GOAL-FREE LEARNING BY ANALOGY Alain Rappaport	261
A SCIENTIFIC APPROACH TO PRACTICAL INDUCTION Larry Rendell	269
EXPLORING SHIFTS OF REPRESENTATION Patricia J. Riddle	275
CURRENT RESEARCH ON LEARNING IN SOAR Paul S. Rosenbloom, John E. Laird, Allen Newell, Andrew Golding, and Amy Unruh	281
LEARNING CONCEPTS IN A COMPLEX ROBOT WORLD Claude Sammut and David Hume	291
LEARNING EVALUATION FUNCTIONS Patricia A. Schooley	295
LEARNING FROM DATA WITH ERRORS Jakub Segen	299
EXPLANATION-BASED MANIPULATOR LEARNING Alberto Maria Segre	303
LEARNING CLASSICAL PHYSICS Jude W. Shavlik	307
VIEWS AND CAUSALITY IN DISCOVERY: MODELLING HUMAN INDUCTION Jeff Shrager	311
LEARNING CONTROL INFORMATION Bernard Silver	317
AN INVESTIGATION OF THE NATURE OF MATHEMATICAL DISCOVERY Michael H. Sims	. 321

333
333
337
343
349
353
359
363
369
375
379
385
391
425
3

*