QUANTUM PHYSICS OF MATTER

Introduction Chapter | Quantum gases

- What is a quantum gas?
- Quantum theory of a gas of distinguishable molecules
 - Review of the classical statistical theory of an ideal gas 2.1
 - Quantization of translational energy and the density of states 2.2
 - Origins of the Boltzmann factor 2.3
- Identical particles in quantum mechanics 3 Indiction wich a bility of identical as

10

14

17

57

58

58

61

68

71

71

73

78

80

83

88

92

93

95

97

	3.1	Indistinguishability of identical particles	22
	3.2	Counting configurations of indistinguishable particles	22
	3.3	Replacing the Boltzmann factor	26
	3.4	When does indistinguishability matter?	28
4	The photon gas — blackbody radiation explained		30
	4.1	Energy distribution of a photon gas	31
	4.2	Planck's radiation law	33
	4.3	Consequences of Planck's radiation law	35
	4.4	Other gases of bosons	38
5	The electron gas in metals		41
	5.1	Drude's classical model of the free electrons in metals	41
	5.2	Pauli's quantum model of an electron gas	44
	5.3	Consequences of Pauli's distribution	48
	5.4	Other gases of fermions	49
6	Clos	sing items	50
Ap	pendix	to Chapter I	55
ante	2 2 9	Solid-state physics	57

Shapeer & Sond-State physics I Beyond tin disease 2 The bonding and structure of solids Bonding in molecules 2.1 Bonding in solids 2.2 Imperfections and mechanical strength 2.3 3 Free-electron models of conduction in solids Survey of electrical and thermal conductivities 3.1 Free-electron models of electrical conduction 3.2 Free-electron models — successes and failures 3.3 4 Band theory of solids 80 Energy band formation in solids 4.1 Conductors, insulators and semiconductors 4.2 Types of semiconductors 4.3 5 The p-n junction and semiconductor devices 92 Semiconducting materials 5.1 The p-n junction in equilibrium 5.2

5.3 The p-n junction diode

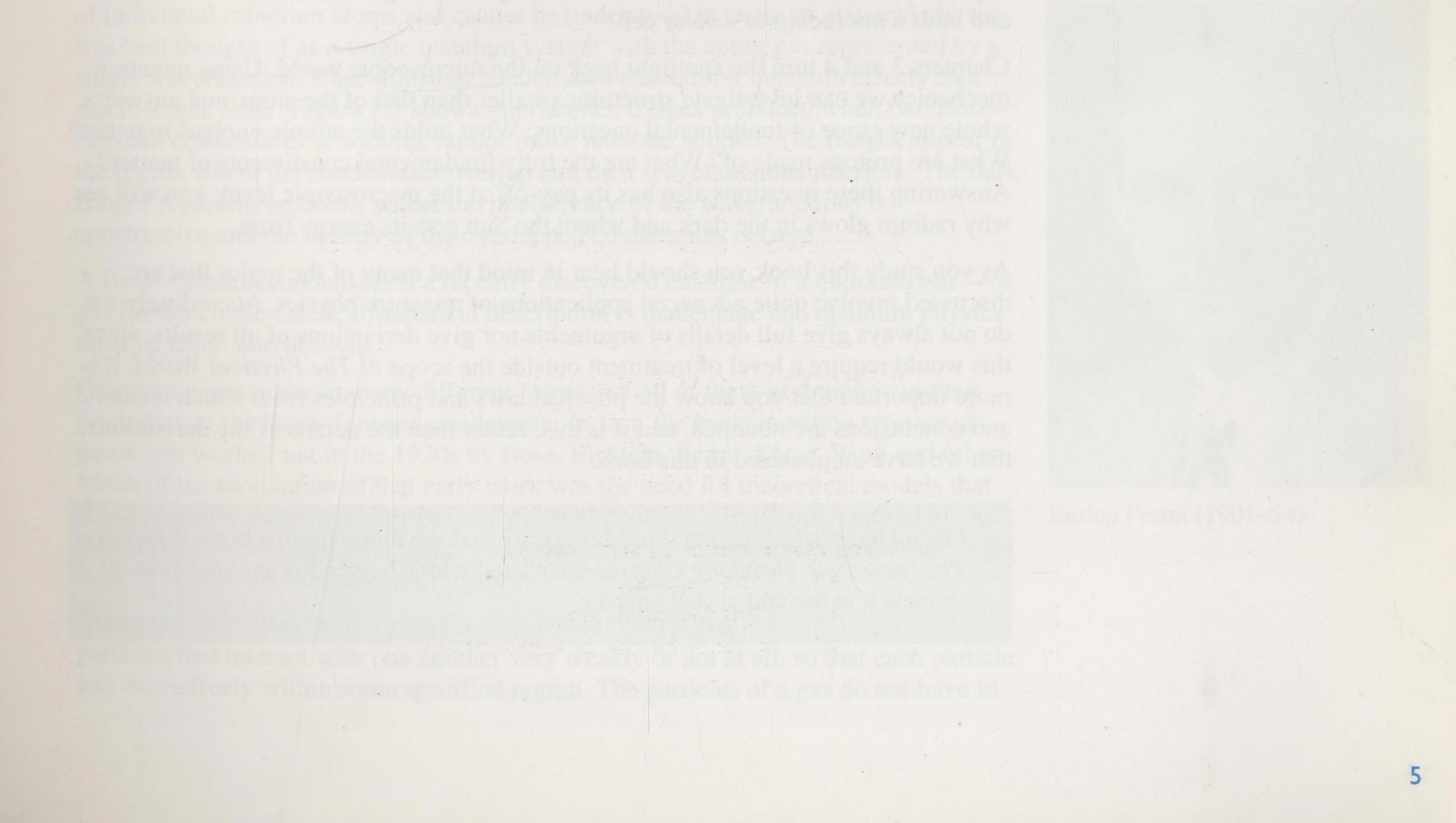
Semiconductor devices 5.4

The Physical World

-

4

6 Superconductivity	102
6.1 Introducing superconductivity	102
6.2 The origin of superconductivity	104
6.3 Superconductors and their applications	106
6.4 High-temperature superconductivity	107
7 Closing items	109
Chapter 3 Nuclear physics	113
I Energy puzzles	113
2 Characteristics of atomic nuclei	114
2.1 Nuclear composition	114
2.2 Nuclear sizes	116
2.3 Radioactive decay	119
2.4 The exponential decay law	123
	125
2.5 A survey of known nuclei	
2.6 Two applications of radioactivity	128
3 Nuclear stability and binding energies	129
3.1 Nuclear binding energies	130
3.2 Binding energy per nucleon	131
3.3 Fission and fusion	132
3.4 The valley of stability	134
4 Nuclear structure	136
4.1 The semi-empirical model of the nucleus	136
4.2 The nuclear shell model	140
4.3 Overview of the Z–N plane	145
5 Quantum-mechanical tunnelling in nuclear reactions	146
5.1 Tunnelling and α -decay	147
5.2 Tunnelling and the first nuclear accelerator	148
5.3 Tunnelling before there were stars	150
5.4 Tunnelling in the Sun and other stars	150
5.5 Nuclear fission — a case study	152
6 Closing items	155
Chapter 4 Particle physics	159
I The challenge of particle physics	159
I.I Leptons and quarks — a brief preview	160
2 Introduction to particle physics and its techniques	162
2.1 Early discoveries	162
2.2 High-energy collisions	163
2.3 Experimental techniques	165
3 Particles and their interactions	174
3.1 The fundamental forces	174
3.2 Families of particles	175
3.3 More hadrons — strangeness and resonances	177
3.4 More leptons — neutrinos and the tauon	181
4 The quark model for hadrons	183
4.1 The six quarks	183
4.2 Using the quark model	184


4.2 Using the quark model4.3 Evidence for the existence of quarks

186

Quantum physics of matter

5.2 The standard model and beyond	189 192 194
	Ъ.Т.,
	94
5.3 Optional multimedia activity	
6 Closing items	94
Chapter 5 Consolidation and skills development	97
I Introduction	97
2 Overview of Chapters I to 4	97
2.1 Quantum gases	198
2.2 Solid-state physics	202
2.3 Nuclear physics	203
	204

3 Preparing for and taking exams 3.1 Before the exam	
3.2 In the exam room	
4 Revision questions	
5 Interactive questions	
6 Postscript	
Answers and comments	
Acknowledgements	
Index	

