

Contents

Preface	xi
One Basic Muscle Physiology and Energetics	1
1 Energy sources for muscular activity	3
1.1 Adenosine triphosphate: the energy currency	3
1.2 Energy continuum	4
1.3 Energy supply for muscle contraction	4
1.4 Energy systems and running speed	7
1.5 Why can't a marathon be sprinted?	7
1.6 Energy sources and muscle	8
1.7 Can muscle use protein for energy?	9
1.8 Key points	10
2 Skeletal muscle structure and function	11
2.1 Skeletal muscle structure	12
2.1.1 Gross anatomical structure	12
2.1.2 The muscle fibre	13
2.2 Muscle contraction	18
2.2.1 Propagation of the action potential	18
2.2.2 Excitation-contraction coupling	18
2.2.3 The sliding filament mechanism	20
2.3 Muscle fibre types	21
2.3.1 General classification of muscle fibres	21
2.3.2 Muscle fibre distribution	23
2.3.3 Muscle fibre recruitment	24
2.4 Muscles in action	26
2.4.1 Types of muscle contraction	26
2.4.2 The twitch contraction	26
2.4.3 The length-tension relationship	27

2.4.4	Tetanus contractions	27
2.4.5	Force-velocity relationship	28
2.4.6	Muscle fatigue	29
2.5	Key points	29
3	Biochemical concepts	31
3.1	Organization of matter	32
3.1.1	Matter and elements	32
3.1.2	Atoms and atomic structure	32
3.1.3	Atomic number and mass number	34
3.1.4	Atomic mass	34
3.1.5	Ions, molecules, compounds and macronutrients	34
3.2	Chemical bonding	35
3.2.1	Ionic bonds	36
3.2.2	Covalent bonds	36
3.2.3	Molecular formulae and structures	38
3.2.4	Functional groups	39
3.3	Chemical reactions, ATP and energy	40
3.3.1	Energy	40
3.3.2	ATP	41
3.3.3	Units of energy	42
3.3.4	Types of chemical reactions	43
3.4	Water	45
3.4.1	General functions of water	45
3.4.2	Water as a solvent	46
3.5	Solutions and concentrations	46
3.6	Acid-base balance	47
3.6.1	Acids, bases and salts	47
3.6.2	pH Scale	48
3.6.3	Buffers	49
3.7	Cell structure	49
3.7.1	The plasma membrane	50
3.7.2	The nucleus	51
3.7.3	Cytoplasm and organelles	51
3.8	Key points	53
Two	Fundamentals of Sport and Exercise Biochemistry	55
4	Proteins	57
4.1	Protein function	58
4.1.1	General protein function	59
4.2	Amino acids	62
4.2.1	Amino acid structure	62
4.3	Protein structure	62
4.3.1	Primary structure	62
4.3.2	Secondary structure	65
4.3.3	Tertiary structure	65

4.3.4	Quaternary structure	65
4.4	Proteins as enzymes	67
4.4.1	Mechanisms of enzyme action	67
4.4.2	Factors affecting rates of enzymatic reactions	68
4.4.3	Coenzymes and cofactors	70
4.4.4	Classification of enzymes	70
4.4.5	Regulation of enzyme activity	72
4.5	Protein turnover	73
4.5.1	Overview of protein turnover	73
4.5.2	DNA structure	73
4.5.3	Transcription	74
4.5.4	The genetic code	74
4.5.5	Translation	76
4.6	Amino acid metabolism	78
4.6.1	Free amino acid pool	79
4.6.2	Transamination	79
4.6.3	Deamination	80
4.6.4	Branched chain amino acids	82
4.6.5	Glucose-alanine cycle	82
4.6.6	Glutamine	82
4.6.7	The urea cycle	85
4.7	Key points	85
5	Carbohydrates	87
5.1	Relevance of carbohydrates for sport and exercise	88
5.2	Types and structure of carbohydrates	90
5.2.1	Monosaccharides	90
5.2.2	Disaccharides and polysaccharides	91
5.3	Metabolism of carbohydrates	92
5.3.1	Glycogenolysis	93
5.3.2	Glycolysis	95
5.3.3	Lactate metabolism	98
5.3.4	The 'link' reaction; production of acetyl-CoA	98
5.3.5	The TCA (or Krebs) cycle	98
5.3.6	Electron transport chain	98
5.3.7	Oxidative phosphorylation	100
5.3.8	Calculation of ATP generated in glucose oxidation	101
5.3.9	Overview of glucose oxidation	102
5.3.10	Fructose metabolism	102
5.3.11	Gluconeogenesis	102
5.3.12	Glycogenesis	103
5.4	Key points	107
6	Lipids	109
6.1	Relevance of lipids for sport and exercise	110
6.2	Structure of lipids	112
6.2.1	Classification of lipids	112

6.2.2	Compound lipids	115
6.2.3	Derived lipids	115
6.3	Metabolism of lipids	115
6.3.1	Lipolysis	115
6.3.2	β -oxidation	118
6.3.3	Ketone body formation	119
6.3.4	Formation of fatty acids	119
6.3.5	Triglyceride synthesis	122
6.4	Key points	124
Three	Metabolic Regulation in Sport and Exercise	127
7	Principles of metabolic regulation	129
7.1	How are catabolic and anabolic reactions controlled?	130
7.2	Hormones	130
7.3	Peptide hormones, neurotransmitters and regulation	133
7.3.1	Adrenaline activation of glycogenolysis	134
7.3.2	Adrenaline activation of lipolysis	135
7.3.3	Insulin activation of glycogen synthase	135
7.3.4	Insulin inhibition of lipolysis	137
7.3.5	Insulin stimulation of protein synthesis	137
7.4	Steroid hormones and regulation	138
7.5	Allosteric effectors	140
7.5.1	Regulation of glycogen phosphorylase	140
7.5.2	Regulation of PFK	140
7.5.3	Regulation of PDH	140
7.5.4	Regulation of CPT1	142
7.5.5	AMPK as a metabolic regulator	142
7.6	Key points	144
8	High-intensity exercise	145
8.1	Overview of energy production and metabolic regulation in high-intensity exercise	145
8.1.1	Definition of high-intensity exercise	145
8.1.2	Energy production during high-intensity exercise	146
8.1.3	Evidence of energy sources used in HIE	148
8.1.4	Metabolic regulation during high-intensity exercise	152
8.2	Effects of exercise duration	152
8.3	Effects of nutritional status	153
8.3.1	Can nutritional ergogenic aids help HIE?	154
8.4	Effects of training	155
8.5	Mechanisms of fatigue	157
8.5.1	Reduced ATP	158
8.5.2	Reduced PCr	159
8.5.3	Increased P_i	159
8.5.4	Lactate and H^+	160
8.6	Key points	161

9 Endurance exercise	163
9.1 Overview of energy production and metabolic regulation in endurance exercise	164
9.1.1 Definition and models of endurance exercise	164
9.1.2 Energy production in endurance exercise	164
9.1.3 Overview of metabolic regulation in endurance exercise	165
9.2 Effects of exercise intensity	166
9.2.1 CHO metabolism	166
9.2.2 Lipid metabolism	168
9.3 Effects of exercise duration	172
9.4 Effects of nutritional status	174
9.4.1 CHO-loading and muscle glycogen availability	174
9.4.2 Fat-loading strategies	176
9.4.3 Pre-exercise and during-exercise CHO ingestion	178
9.4.4 Pre-exercise FFA availability	181
9.5 Effects of training status	183
9.5.1 CHO metabolism	183
9.5.2 Lipid metabolism	184
9.5.3 Protein metabolism	188
9.6 Mechanisms of fatigue	189
9.7 Key points	192
10 High-intensity intermittent exercise	195
10.1 Overview of energy production in intermittent exercise	196
10.1.1 Definition and models of intermittent exercise	196
10.1.2 Energy systems utilized in intermittent exercise	197
10.2 Metabolic regulation in intermittent exercise	197
10.3 Effects of manipulating work-rest intensity and ratio	202
10.4 Effects of nutritional status	206
10.4.1 Muscle glycogen availability	207
10.4.2 Pre-exercise CHO ingestion	207
10.4.3 CHO ingestion during exercise	209
10.5 Muscle adaptations to interval training	210
10.6 Mechanisms of fatigue	215
10.6.1 Carbohydrate availability	216
10.6.2 PCr depletion	217
10.6.3 Acidosis	218
10.6.4 Extracellular potassium	220
10.6.5 Reactive oxygen species (ROS)	221
10.6.6 P_i accumulation and impaired Ca^{2+} release	223
10.7 Key points	224
References and suggested readings	227
Index	241