

Since publication of the first edition, not only has knowledge advanced but an interdisciplinary approach to much of the research has become increasingly common and productive. These developments are reflected in this book by the threefold expansion of the bibliography and by the bringing together of the approaches and scientific knowledge from the contributing disciplines of geology, civil engineering, hydrology, soil science, ecology, and geomorphology to produce a comprehensive text which makes possible an integrated understanding of hillslopes.

Approximately seventy per cent of the text is new, with many new figures and plates, which has enabled Professor Selby to provide a more comprehensive introduction than in the first edition to the nature of chemical bonding, the properties of mineral particles and fabrics of weak rock, rheology of rock and soil, hillslope hydrology, hillslope stratigraphy, and landslide hazard investigation.

M.J.Selby is Professor of Earth Sciences and Deputy Vice-Chancellor of the University of Waikato in New Zealand and the author of Earth's Changing Surface. He has undertaken field work in Antarctica, the Sahara, Namib Desert, Atacama, Andes, Himalayas, Central Australia, and Western Europe as well as New Zealand.

Comments from reviews of the first edition

An excellent general text, with many and fresh examples which make it a pleasure to read Earth Surface Processes and Landforms

Professor Selby must be congratulated for producing a text which will interest all geomorphologists [and] will become a standard text in universities

Geographical Magazine

[Selby's] discussion of stress and strength throughout the book are some of the most readable and understandable presentations of those topics I have ever seen

Geology

[This book's] practical slant will prove very attractive

Environmental Studies

Author and publisher are to be commended for producing such a well-illustrated volume on a topic which, although central to geomorphology, is often treated too esoterically

Books in the Earth Sciences

OXFORD UNIVERSITY PRESS

9 780198 741831

	Symbols used	xiii		Mudrock fabrics	21
				Unloading	23
1.	INTRODUCTION			Structure in pedogenetic soils	24
	Complexity in hillslope evolution	1		Fabric of coarse-grained soils	25
	Practical value of hillslope studies	2	4.	STRESS, STRAIN, AND	
	Hillslope systems	2		RHEOLOGY OF MATERIALS	27
	Energy available for hillslope				27
	processes	4		Definitions	21
	Plan of the book	5		Force and stress	27
2	BONDS	6		Strain	27
A.				Strength	27
	States of matter	6		Rheology	20
	Types of bonds	6		Elastic behaviour	28
	Ionic bonding			Viscosity	30
	Covalent bonding			Plasticity	30
	Metallic bonding			Mixed behaviour	30
	van der Waals forces	7		Rheology of rock	31
	Hydrogen bonding and the structure	8	1	Rheology of soils and weak sediments	33
	of water		Time-dependent behaviour of earth	24	
	Crystalline solids	9		materials	34
	Chemical reactions	9		Moduli of elasticity	35
2	PARTICLES AND FABRICS OF			Strain energy and fractures	37
••	SOIL AND WEAK SEDIMENTS	11		Fractures in rock	38
				Stresses in the upper crust	40
	Particle size	11		Residual stresses	40
	Origins of particles	12		Gravitational stresses	41
	Clay minerals	13		Tectonic stresses	42
	Phyllosilicate mineral structures	13		Thermal stresses	42
	Structural units	14		Finite-element stress analyses	42
	Characteristics	14		Examples of finite-element analyses	43
	Formation of phyllosilicate clays	16	5.	STRENGTH OF EARTH	
	Short-range order aluminosilicates	17		MATERIALS	49
	Oxide clays		18 18		
	Clays, climate, and drainage			Definitions	49
	Adsorbed water	18		Strength Pock and soil	49
	Electric double layer	19		Rock and soil Problems of strongth massurements	
	Electric charges	20		Problems of strength measurements	50
	Fabric of clays in sedimentary rocks	21		Shear strength parameters	50
	Clays in weak rocks	21		Cohesion	51

	Examples of cohesive effects	53		Atterberg limits	108
	Apparent cohesion	54		Viscosity	110
	Friction	54		Behaviour and loss of structure	111
	Friction angle	56		Sensitive soils	111
	The Coulomb equation	57		Liquefaction	114
	Water and shear strength	57		Collapsible soils	116
	Measurement of soil and weak rock			Dispersible soils	118
	strength	59		Volume change in clay soils	118
	Laboratory tests	59		Compression and consolidation	120
	Soil shear box tests	60	0	WEATHERING PROCESSES	122
	Triaxial compression tests	63	0.		123
	Effective stress analyses	68		Factors affecting weathering	123
	Appropriate parameter	68		Climatic influences	123
	Variation of c and ϕ	68		The physical characteristics of rocks	126
	Field measurements of soil strength	69		Processes of weathering	127
	Strength of intact rock	70		Physical weathering processes	128
	Unconfined compressive strength test	71		Fatigue failure and stress corrosion	144
	Rock deformation in compression	72		Chemical weathering processes	145
	Tensile strength test	73		Biotic weathering	150
	Triaxial tests	74		Hydrothermal alteration	152
	Shear strength of intact rock	75		Sequence of weathering processes	153
	Shear testing dies for a uniaxial			Indices of weathering	153
	machine	75		Rates of weathering	155
	Determination of shear strength	75		Rates of soil formation	156
	Water and rock strength	76	•	I ANIDEODALC EDOLL	
	Field measurements of intact rock		7.	LANDFORMS FROM	
	strength	77		WEATHERING, SOILS, AND	157
	Dynamic measures of elasticity	82		DURICRUSTS	
	PROPERTIES OF ROCK MASSES	04		Landforms from weathering processes	157
	PROPERTIES OF KOCK MASSES	84		Case-hardening, weathering rinds,	
	Joints and other partings	84		and rock varnish	157
	Shear strength of partings in rock	87		Pits, pans, caverns, and rills	158
	Shear strength of joint wall surfaces	87		Convergence of forms	163
	Measurement of joint shear strength	90		Landforms from dissolution	163
	Effective stresses along partings	93		Weathering profiles	164
	Rock-mass strength	94		The solum	164
	Classification parameters	94		Saprolith	168
	Intact strength	94		Deep weathering	170
	Weathering	94		Weathering fronts and etching	170
	Spacing of partings within a rock mass	95		Mantle stripping and inherited forms	172
	Orientation of joints	97		Duricrusts	175
	Width, or aperture, of joints	99		Profiles	175
	Continuity and infill of joints	100		Origins of ferricretes, alcretes, and	
	Groundwater	101		silcretes	178
	Unified classification and rating of			Rates of formation and hardening	183
	parameters	101		Landforms and duricrusts	184
	Strength-equilibrium slopes	103		Duricrusts as resources	184
	Field procedures	104			
	Strength criterion for rock masses	105	10.	HILLSLOPE STRATIGRAPHY	701
,	DDODEDTIES OF SOULS	104		ANDFORM	186
•	PROPERTIES OF SOILS	106		Stratigraphy and slope deposits	186
	Phase relationships	106		Solum characteristics and environment	186
	Behaviour and water-content	107		Soils and topography	187

	Hillslopes, catenas, and paleosols	189		Block glides	260
	Hillslope form changes	192		Translational slides	260
	Evidence of past erosional events	195		Flows	263
	Hillslope form	199		Field-study of landslides	265
	Field investigation methods	201		Morphometry	265
				Shear-strength testing	266
11				Stability analyses	268
	HILLSLOPE HYDROLOGY	202		Factor of safety	268
	Water in soils	202		Stability analyses of shallow	
	Surface tension and capillarity	202		translational slides	268
	Soil-water potential	203		Stability analyses of rotational	-00
	Soil-water content and tension	204		landslides	271
	Soil-water movement	205		Limitations and alternative forms of	2/1
	Hillslopes in the hydrological cycle	207		analysis	274
	Interception	208		Factors influencing landsliding in soils	275
	Infiltration	208		Vegetation Vegetation	275
	Concepts of runoff	213		Earthquakes	278
	Runoff processes	214		Water	282
	Infiltration-excess overland flow	214		Ice	285
		214			
	Subsurface stormflow	216		Weathering Uillelane form and orientation	288
	Saturation-excess flow			Hillslope form and orientation	288
	Pipe-flow	217		Hillslopes on soils with distinctive	200
	Conclusion	218		properties	290
12.	EROSION OF HILLSLOPES BY			Cliffs in brittle granular soils	290
1 2000	RAINDROPS AND FLOWING			Mass wasting on over-consolidated	201
	WATER	219		mudrocks	291
				Slope failure in saprolites and residual	201
	Controls on erosion	219		soils	294
	The climatic factor and raindrop	221		Case studies	298
	erosion	221	14	FLOW FAILURES ON	
	The topographic factor	225	1-4.	HILLSLOPES	299
	The vegetation factor	225	7		
	The soil factor	226		Rheology of water-sediment mixtures	299
	Wash, rill, gully, and piping processes	231		Classification by rheology	299
	Wash erosion	231		Major categories of flows	299
	Rill erosion	232		Problems of classification	302
	Gully erosion	236		Debris flows	303
	Pipe erosion	240		Conditions for development	303
	Distribution of erosional and			Reports of observers	303
	depositional sites on a hillslope	243		Morphology of debris flows	305
	Caesium-137 tracer	244		Mechanics of failure and movement	306
	Solution	244		Denudation rates	313
	The geochemical budget	245		Large rock avalanches	313
	Variations in solute discharge	246		Examples of rock avalanches	314
	Solution and rocks	246		Mechanisms of flow	316
				Hazards and uses of avalanches	319
P9		249			
3.	MASS WASTING OF SOILS	241	107 499		And the second second
3.	MASS WASTING OF SOILS Classification of mass wasting	249	15.	ROCK-SLOPE PROCESSES	320
			15.	ROCK-SLOPE PROCESSES Factors in rock resistance and failure	320 320
	Classification of mass wasting	249	15.		
	Classification of mass wasting Types of mass wasting in soils	249 252	15.	Factors in rock resistance and failure	320
	Classification of mass wasting Types of mass wasting in soils Creep Falls	249 252 258	15.	Factors in rock resistance and failure Geological factors Climatic factors	320 320
	Classification of mass wasting Types of mass wasting in soils Creep	249 252 258 258	15.	Factors in rock resistance and failure Geological factors	320 320 330

	Types of rock-slope failure	333		Regional investigations	377
	Falls	333		Data assembly and mapping	381
	Toppling failures	338		Site investigations	381
	Slides	338		Summary of contents of investigations	383
	Stability analyses of slides	342		Protection against landslide hazards	385
	Limitations of stability analyses	343			
	Gravitational spreading of ridges	344	18.	MAGNITUDES AND	
	Snow avalanches	347		FREQUENCIES OF EROSIONAL	000
	Deposits below rock slopes	349		EVENTS	388
	Talus mantles and deposits	351		Equilibrium	389
	Development of talus-slope forms	352		Thresholds	390
	MODEL CANID IIII I CLODE			Periods of form adjustment	392
10.	MODELS AND HILLSLOPE	05/		Extreme events in slope evolution	393
	DEVELOPMENT	356		Regions of extreme climatic events	394
	Types of models	356		Effect on valley floors	395
	Evolution of soil-covered hillslopes	357		Accelerated, induced, and normal	
	Deterministic models	357		erosion	396
	Simulation models	358		Conclusion	397
	Verification of models	361	10	DATES OF DENILIDATION AND	
	Threshold hillslope inclinations and		17.	RATES OF DENUDATION AND	200
	landsliding	362		THEIR IMPLICATIONS	398
	Landscapes in dynamic equilibrium	363		Methods of reporting data	398
	Limitations of models	364		Denudation rates and regional climate	399
	Evolution of rock slopes	365		River-sediment discharges	399
.5	Deterministic models with talus			Rates of surface processes	400
	formation	366		Sources of error	402
	Hillslopes controlled by their rock-			Denudation and relief	405
	mass strength	368		Tectonic uplift and denudation	407
	Rock slopes which are not in strength			Conclusions	408
	equilibrium	370		APPENDIX	411
	Conclusions	375			
17	LANDSLIDE HAZARDS:			The International System (SI) of Units	411
	AVOIDANCE AND				440
	PROTECTION	377		References	413
					111
	Hazard and risk	377		Index	446