DYNAMIC FIELDS AND WAVES

Introduction Chapter I Fields that vary with time

- Current without wires some examples of induction
- Principles of electromagnetic induction 2
 - Induction by motion 2.1
 - Induction by a changing field 2.2
 - Magnetic flux 2.3
 - Changing magnetic flux 2.4
 - Faraday's law: the magnitude of an induced EMF 25

	2.6 Lenz's law: the direction of an induced current	25
	2.7 Eddy currents	28
	2.8 Self-inductance	29
	2.9 Transient currents	32
3	Applications of electromagnetic induction	34
	3.1 Telephones, microphones and hearing aids	34
	3.2 Generators and motors	36
	3.3 AC circuits, resonance and radios	39
	3.4 Transformers	45
4	Maxwell's equations	48
	4.1 The field equations	48
	4.2 Electromagnetic radiation	50
5	Closing items	51
hapte	er 2 Waves and electromagnetic radiation	55
I	Butterflies and oil spills	55
2	Describing waves	55
	2.1 What is a wave?	55
	2.2 Wave properties	57
	2.3 Transverse and longitudinal waves	58
	2.4 Examples of transverse and longitudinal waves	59
3	Travelling waves	61
	3.1 The mathematical description of travelling waves	61
	3.2 The speed of waves	64
	3.3 Plane waves and spherical waves	67
	3.4 The Doppler effect	69
4	Standing waves	74
	4.1 Reflection of travelling waves at a boundary	74
	4.2 The principle of superposition	75
	4.3 The superposition of two travelling waves	75
	4.4 Bounded waves	78
	4.5 Standing waves in musical instruments	79
5	Electromagnetic radiation	82
	5.1 The wave model of electromagnetic radiation	82

9

10

13

15

18

23

84

87

- The wave model of electromagnetic radiation 5.1
- Polarization and the applications of polarized light 5.2
- The electromagnetic spectrum 5.3

The Physical World

.

.

.

.

4

.

.

6	The propagation of waves	92
	6.1 The Huygens principle	92
	6.2 Reflection	93
	6.3 Refraction	95
	6.4 Dispersion	. 99
	6.5 Total internal reflection	99
1	6.6 Diffraction, superposition and interference	102
	6.7 Diffraction by two or more slits	103
	6.8 Diffraction by a single slit	107
	6.9 Applications of diffraction and interference	109
7	Closing items	113
Chapte	r 3 Optics and optical instruments	117
1	Seeing the very small and the very distant	117
2	Optical building blocks	118
	2.1 The parallel-sided glass block	118
	2.2 Prisms	119
	2.3 Lenses	120
	2.4 Curved mirrors	123
	2.5 Aberrations	123
3	Objects and images	125
	3.1 Locating the image	125
	3.2 The wavefront approach	128
	3.3 Extended objects	129
	3.4 Focusing inclined plane waves	133
4	Optical systems	134
	4.1 The human eye	134
	4.2 The magnifying glass	142
	4.3 The compound microscope	145
	4.4 The refracting telescope	148
	4.5 The reflecting telescope	153
	4.6 The camera	156
5	Closing items	163
Chapte	er 4 Special relativity	169
1	Why do fast-moving muons live so long?	169
2	The principle of relativity	171
	2.1 Events, coordinates and clocks	171
	2.2 Frames of reference	173
	2.3 Newton's laws of motion revisited	174
	2.4 The laws of physics and the principle of relativity	177
3	Coordinate transformations	179
	3.1 The central problem of relativity	179
	3.2 The Galilean coordinate transformation	182
	3.3 The Galilean velocity transformation	183
4	The constancy of the speed of light	185
	4.1 Is c the speed of light relative to the source?	186
	4.2 Is c the speed of light relative to space?	188

4.3 Is c the speed of light relative to space:

192

Dynamic fields and waves

5	Som	ne spectacular new predictions of special relativity	194
	5.1	Einstein's two postulates	194
	5.2	Time dilation	195
	5.3	Lorentz contraction	200
	5.4	Symmetry	204
	5.5	Muon decay	209
6	The	Lorentz transformation	210
	6.1	The coordinate transformation of special relativity	210
	6.2	Causality and simultaneity	212
	6.3	The velocity transformation of special relativity	214
	6.5	Special relativity at low speeds	216
7	Rela	tivistic physics	216
	7.1	Relativistic mechanics	217
	7.2	Electromagnetism	219
	7.3	Conclusion	220
8	Clos	sing items	221
Chapte	er 5	Consolidation and skills development	225
	5.1	Introduction	225
	5.2	Overview of Chapters I to 4	225
	5.3	Problem-solving skills — the importance of diagrams	227
	5.4	Basic skills and knowledge test	235
	5.5	Interactive questions	236
	5.6	Physica problems	236
Answers and comments			237
Acknow	267		
Index			268

