Contents

From the Series Editor	V
Preface	XV
The Editors	xvii
Author Index	
Color Plates	CP1
Part I: General Problems of Biological Modeling	
1 Trends and Tools for Modeling in Modern Biology Michael Hucka and James Schaff	3–15
Summary I. Introduction II. Representing Model Structure and Mathematics III. Augmenting Models with Semantic Annotations IV. Connecting Models to Results V. Future Directions for Systems Biology Markup Lang VI. Conclusions References	3 4 4 6 9 guage (SBML) 13 13
2 Scaling and Integration of Kinetic Models of Photos Towards Comprehensive E-Photosynthesis Ladislav Nedbal, Jan Červený and Henning Schmi	17-29
Summary I. Introduction II. Mapping Partial Photosynthesis Models into the	17 18 Comprehensive
Model Space (CMS): The Principles and Strategies III. Mapping of Photosystem II Models into the Compre	19
IV. Concluding Remarks Acknowledgments	21 27 28
Acknowledgments References	28

Part II: Modeling of Light Harvesting and Primary Charge Separation

3	Modeling Light Harvesting and Primary Charge Separation in Photosystem I and Photosystem II Rienk van Grondelle, Vladimir I. Novoderezhkin and Jan P. Dekker	33–53
	Summary I. Introduction II. Physical Models of Energy Transfer III. Exciton Spectra and Energy Transfer in Photosystem I (PS I) Core IV. Excitation Dynamics in Major Light Harvesting Complex II (LHCII) V. Energy Transfers and Primary Charge Separation in Photosystem II Reaction Center	34 35 40 41
	VI. Concluding Remarks Acknowledgments References	50 50 50
4	Unraveling the Hidden Nature of Antenna Excitations Arvi Freiberg and Gediminas Trinkunas	55-82
	Summary I. Introduction II. Disordered Frenkel Exciton Model for Absorbing States	55 56
	of Circular Antenna Aggregates III. Shortcomings of the Disordered Frenkel Exciton Model IV. Excitonic Polaron Model of the Antenna Fluorescing States V. Evaluation of the Model Parameters from the Experimental Spectra VI. Conclusions and Outlook Acknowledgments References	59 63 64 70 76 77
Pa	rt III: Modeling Electron Transport and Chlorophyll Fluoresce	ence
5	Models of Chlorophyll a Fluorescence Transients Dušan Lazár and Gert Schansker	85–123
	Summary I. Fluorescence Induction II. Approaches and Assumptions in the Modeling of the Fluorescence Rise III. Particular Models for the Fluorescence Rise IV. Modeling the Whole Fluorescence Induction V. Conclusions and Future Perspectives Acknowledgments References	86 91 100 111 115 115

6	Derivation of a Descriptive Algorithm Wim Vredenberg and Ondřej Prášil	125–149
	Summary	126
	I. Introduction	126
	II. Variable (Chlorophyll) Fluorescence – Some Basics	128
	III. Application of Single, Twin and Multiple Turnover Flashes	132
	IV. Distinguishable Phases of Fluorescence Response	105
	upon Multiturnover Excitation	135 137
	V. Fluorescence Induction Algorithm for Experimental Curves	144
	VI. Concluding Remarks Acknowledgments	146
	References	146
	ricicioco	
7	Modeling of the Primary Processes in a Photosynthetic Membrane	151–176
	Andrew Rubin and Galina Riznichenko	
	Summary	151
	I. Introduction	152
	II. Fluorescence as an Indicator of the Photosystem State III. General Kinetic Model of the Processes in Photosynthetic	153
	Thylakoid Membrane	154
	IV. Multiparticle Modeling of the Processes in the Photosynthetic Membrane	166
	V. Concluding Remarks and Future Perspectives	171
	Acknowledgments	171
	References	171
8	Clustering of Electron Transfer Components:	
	Kinetic and Thermodynamic Consequences	177-205
	Jérôme Lavergne	
	Summary	177
	I. Introduction	178
	II. Thermodynamic Performance of Integrated and Diffusive	
	Photosynthetic Models	179
	III. Integrated Versus Diffusive Electron Transfer Chain	183
	IV. The Small Apparent Equilibrium Constant in the Donor Chain	
	of Rhodobacter sphaeroides	189
	V. Quinone Domains	195
	VI. Statistical and Non Statistical Heterogeneities	198
	VII. Pool Function Test at Steady State	199
	VIII. Kinetic Analysis: Playing with Inhibitors, Redox Potential and Flash Inten	
À	IX. Concluding Remarks	203
	Acknowledgments	203
	References	203

Part IV: Integrated Modeling of Light and Dark Reactions of Photosynthesis

9	Biochemical Model of C ₃ Photosynthesis Susanne von Caemmerer, Graham Farquhar and Joseph Berry	209–230
	Summary I. Introduction II. The Rate Equations of CO ₂ Assimilation III. Parameters and their Temperature Dependencies IV. The Role of Rubisco Activation State V. Estimating Chloroplast pCO ₂ VI. Predicting Photosynthesis from Chloroplast Biochemistry VII. Predicting Chloroplast Biochemistry from Leaf Gas Exchange VIII. Concluding Remarks References	210 211 215 218 219 220 223 224 225
10	Modeling the Temperature Dependence of C ₃ Photosynthesis Carl J. Bernacchi, David M. Rosenthal, Carlos Pimentel, Stephen P. Long and Graham D. Farquhar	231-246
	Summary I. Introduction II. Processes Limiting to C ₃ Photosynthesis III. Modeling Photosynthesis and the Supply of CO ₂ IV. Concluding Remarks Acknowledgments References	232 232 233 240 242 243 243
11	A Model of the Generalized Stoichiometry of Electron Transport Limited C ₃ Photosynthesis: Development and Applications Xinyou Yin, Jeremy Harbinson and Paul C. Struik	247-273
	Summary I. Introduction II. Model Development III. Model Applications IV. Concluding Remarks Acknowledgments References	247 248 250 255 269 269 270
12	Modeling the Kinetics of Activation and Reaction of Rubisco from Gas Exchange Hadi Farazdaghi	275–294
	Summary I. Introduction II. Fundamental Photosynthesis Models III. Rubisco and Its Sequentially Ordered Reaction	275 276 276 279

	IV. Rubisco in Steady State: Biochemical Models V. Experimental Evaluation of the Models	281 287
	VI. Concluding Remarks	290
	Acknowledgments	291
	References	291
13	Leaf C ₃ Photosynthesis in silico:	
	Integrated Carbon/Nitrogen Metabolism	295-322
	Agu Laisk, Hillar Eichelmann and Vello Oja	
	Agu Laisk, Tilliai Lichelliailli and Vello Oja	
	Summary	295
	I. Introduction	296
	II. The Structure of the Model	297
	III. Mathematics	302
	IV. Simulations	312
	V. Concluding Remarks	317
	Acknowledgments	319
	References	319
14	Leaf C ₄ Photosynthesis in silico:	
	The CO ₂ Concentrating Mechanism	323-348
	Agu Laisk and Gerald Edwards	
	Summary	324
	I. Introduction	324
	II. Principles of NADP-ME Type C ₄ Photosynthesis	325
	III. The C ₄ Model	329
	IV. Simulations	334
	V. Knowns and Unknowns in Photosynthesis	338
	Acknowledgments	345
	References	345
15	Flux Control Analysis of the Rate of Photosynthetic	
	CO ₂ Assimilation	349–360
	Ian E. Woodrow	
	Summary	349
	I. Introduction	350
	II. Flux Control Coefficients: Theory and Challenges	352
	III. Reversible Reactions Can Be Flux Limiting	352
	IV. Small Control Coefficients Are Hard to Detect	354
	V. Enzymes with Higher Control Coefficients	356
	VI. Photosynthetic Electron Transport	358
	VII. Concluding Remarks	358
	Acknowledgments	359
	References	359

Part V: From Leaves to Canopies to the Globe

16	Packing the Photosynthetic Machinery: From Leaf to Canopy Ülo Niinemets and Niels P.R. Anten	363-399
	Summary I. Introduction II. Inherent Differences in Microcondinament and Photocombatic Potent	364 364
	II. Inherent Differences in Microenvironment and Photosynthetic Potent Within the Canopy	367
	III. Scaling Photosynthesis from Leaves to Canopy	379
	IV. Concluding Remarks	389
	Acknowledgments References	389
17	Can Increase in Rubisco Specificity Increase Carbon Gain	
	by Whole Canopy? A Modeling Analysis Xin-Guang Zhu and Stephen P. Long	401–416
	Summary	401
	I. Introduction	402
	II. Theory and Model Description III. The Impact of the Inverse Relationship on Leaf and Canopy	404
	Level Photosynthesis	407
	IV. Current Efforts of Engineering Rubisco for Higher Photosynthesis	410
	V. Why Has Evolution Failed to Select the Optimal Rubisco?	412
	VI. Concluding Remarks	413
	Acknowledgments	413
	References	413
18	Role of Photosynthetic Induction for Daily and Annual Carbon	
	Gains of Leaves and Plant Canopies Manfred Küppers and Michael Pfiz	417–440
	Summary	417
	I. Introduction	418
	II. Representation of Plant Architecture by Digital Reconstruction	418
	III. The Dynamic Light Environment IV. Models of Dynamic Photosynthesis	419
	V. Calculation of Crown Carbon Acquisition	427 429
	VI. Annual Carbon Gains from Steady-state and Dynamic	723
	Photosynthesis Simulations	431
	VII. Concluding Remarks	436
	Acknowledgments	436
	References	436

19	Stephan A. Pietsch and Hubert Hasenauer	441-464
	Summary	441
	I. Introduction	442
	II. Biogeochemical Cycles	443
	III. Models of Biogeochemical Cycles	446
	IV. Model Application	452
	V. Examples of Model Application	456
	VI. Concluding Remarks	461
	Acknowledgments	462
	References	462
20	Photosynthesis in Global-Scale Models Andrew D. Friend, Richard J. Geider, Michael J. Behrenfeld and Christopher J. Still	465-497
	Summary	466
	I. Introduction	467
	II. Description of Model Approaches	469
	III. Global Simulation	480
	IV. Concluding Remarks	486
	Acknowledgments	488
	References	488
Ind	lex	499