Table of Contents

About the Authors, xvii	
Introduction, xix	
Снартея 1 • Systems Biology, Biological Knowledge and Kinetic Modelling	
DEPENDENCE OF ENZYME REACTION RATE ON THE SUBSTRATE CONCENTRATION	3
WHAT ARE THE MODEL LIMITATIONS? OR, IN OTHER WORDS, WHAT CAN BE MODELLED?	8
CHAPTER 2 • Cellular Networks Reconstruction and Static Modelling	
PATHWAY RECONSTRUCTION	13
THE HIGH-QUALITY NETWORK RECONSTRUCTION: DESCRIPTION OF THE PROCESS	1 /
VISUAL NOTATIONS: THREE CATEGORIES	17
Communication between Diagrams	22
Tools and Methods for Static Modelling	24
Databases, Ontology and Standards for Pathway	
Reconstruction	25
SBML	27
SBGN: A Visual Notation for Network Diagrams	

DBSolve Editors: RHS, Initial Values, Pools restaurant

CHA	APTER 3 • Edinburgh Pathway Editor	29
	NTRODUCTION	30
F	EATURE SUMMARY OF EPE	31
A	A FLEXIBLE VISUAL REPRESENTATION	35
	CONCLUSION	47
Сна	APTER 4 - Construction and Verification of Kinetic Models	49
	NTRODUCTION	49
В	BASIC PRINCIPLES OF KINETIC MODEL CONSTRUCTION	50
	Development of a System of Ordinary Differential Equations Describing the Dynamics of a Metabolic System	51
	Derivation of Rate Law of Enzymatic Reactions	58
В	BASIC PRINCIPLES OF KINETIC MODEL VERIFICATION	60
	Verification of Kinetic Model Using <i>in Vitro</i> Experimental Data Measured for Purified Enzymes	60
	Verification of the Kinetic Model Using in Vitro and in Vivo Experimental Data Measured for a Biochemical System	61
	STUDY OF DYNAMIC AND REGULATORY PROPERTIES OF THE KINETIC MODEL	63
Сна	APTER 5 • Introduction to DBSolve	65
	CREATION AND ANALYSIS OF THE MODELS USING DBSOLVE. FUNCTIONAL DESCRIPTION	66
	A General Look at the Interface	67
	Description of the Example	67
	The 'Metabolic Network' Tab: Creation of ODE System (Simple Method)	69
	Creation of the ODE System Using RCT Format (The Alternative Method)	71
	DBSolve Editors: RHS, Initial Values, Pools	72
	RHS Editor	72
	Initial Values	73
	Pools	73

	ODE Tab: Solving the ODE System. Model Integration or <i>in Silico</i> Experiments	73
	Explicit Tabbed Page. Calculating Dependencies Determined Explicitly	77
	The Implicit Solver Tabbed Page. The Study of the System in a Steady State	79
	Experimental Data Tab: Creation of the Table with Experimental Data	81
	The Fitter Tabbed Page: Automatic Parameter Fitting	84
	Options Tab	86
	Advanced User Tab	87
	Example of Fitting	87
	The 'Options' Tabbed Page	90
	Some Examples from the CD	92
	PTER 6 - Enzyme Kinetics Modelling	95
11	NTRODUCTION	95
	ASIC PRINCIPLES OF MODELLING OF INDIVIDUAL NZYMES AND TRANSPORTERS	96
	Methods to Derive Rate Equation on the Basis of Enzyme Catalytic Cycle	97
	Quasi-Equilibrium Approach	98
	Quasi-Steady-State Approach	100
	Combined Quasi-Equilibrium, Quasi-Steady-State Approach	102
	How to Express Parameters of the Catalytic Cycle in Terms of Kinetic Parameters	107
	Examples of Rate Equations Expressed in Terms of Kinetic	
	Parameters	109
	Random Bi Bi Mechanism	109
	Ordered Uni Bi Mechanism	110
	Ping Pong Bi Bi Mechanism	111

'HYPERBOLIC' ENZYMES	113
Kinetic Model of Histidinol Dehydrogenase from Escherichia coli	113
Available Experimental Data	113
Construction of the Catalytic Cycle	114
Derivation of Rate Equations	118
Estimation of Kinetic Parameters of the Rate Equations Using in Vitro Experimental Data	121
Kinetic Model of <i>Escherichia coli</i> Isocitrate Dehydrogenase and Its Regulation by Isocitrate Dehydrogenase	101
Kinase/Phosphatase	124
Available Experimental Data	126
Kinetic Model of Isocitrate Dehydrogenase	126
Kinetic Model of IDH Kinase/Phosphatase	128
Model Predictions	136
Kinetic Model of β-Galactosidase from Escherichia coli Cells	139
Catalytic Cycle of \(\beta\)-Galactosidase Construction	139
Derivation of the Rate Equation of β-Galactosidase	141
Identification of the Parameters of the β-Galactosidase Rate Equation	147
Model Predictions	147
Kinetic Model of Imidazologlycerol-Phosphate Synthetase from <i>Escherichia coli</i>	150
Experimental Data	150
Catalytic Cycle	153
Derivation of the Rate Equations	153
Evaluation of Parameters of the Rate Equations	158
Application of the Model to Predict How the Synthetase and Glutaminase Activities of Imidazologlycerol-Phosphate	
Synthetase Depend on Concentrations of the Substrates and Effectors	166
ALLOSTERIC ENZYMES	168
Principles Used for Description of the Functioning	100
of Allosteric Enzymes	168

Kinetic Model of Phosphofructokinase-1 from Escherichia coli	170
	172
Available Experimental Data Reconstruction of a Catalytic Cycle	1/2
Reconstruction of a Catalytic Cycle of Phosphofructokinase-1	173
Derivation of a Rate Equation	175
Verification of the Model against Experimental Data	178
Predictions of the Model	180
TRANSPORTERS	187
Kinetic Model of Mitochondrial Adenine Nucleotide	
Translocase	187
Experimental Data for Model Verification	188
Antiporter Functioning Mechanism	188
Kinetic Scheme	189
Derivation of Rate Equation	190
Dependence of Kinetic Constants on Membrane Potential	194
Estimation of Parameters	198
Model Verification	200
Model Predictions	202
CHAPTER 7 - Kinetic Models of Biochemical Pathways	207
MODELLING OF THE MITOCHONDRIAL KREBS CYCLE	208
Model Development	208
Description of Individual Enzymes of the Krebs Cycle	210
α-Ketoglutarate Dehydrogenase	212
Aspartate-Glutamate Carrier (AGC)	214
Aspartate Aminotransferase (AspAT)	219
Succinate Thiokinase (STK)	221
Succinate Dehydrogenase	225
Fumarase (FUM)	227
Malate Dehydrogenase (MDH)	228
α–Ketoglutarate-Malate Carrier (KMC)	229
Estimation of Model Parameters from in Vivo Data	231

	ODELING OF THE ESCHERICHIA COLI BRANCHED-	222
C	HAIN AMINO ACID BIOSYNTHESIS	233
	Model Development	233
	Derivation of the Rate Equations	235
	Detailed Description of Pathway Steps	237
	Influxes	237
	Threonine Dehydratase (TDH)	239
	Acetolactate Synthase (AHAS)	239
	Acetohydroxy Acid Isomeroreductase (IR)	241
	Dihydroxy-Acid Dehydratase (DHAD)	243
	Branched-Chain Amino Acid Transaminase (BCAT)	245
	NADP Recycling and Effluxes	246
	Evaluation of Maximal Reaction Rates	246
Сная	PTER 8 - Modelling of Mitochondrial Energy Metabolism	249
	OXIDATIVE PHOSPHORYLATION AND SUPEROXIDE	
	RODUCTION IN MITOCHONDRIA	249
D	EVELOPMENT OF KINETIC MODELS	251
	ESCRIPTION OF INDIVIDUAL PROCESSES OF THE NODEL	262
	ODEL PREDICTIONS	269
ROK	IODEL FREDICTIONS	209
Сная	PTER 9 - Application of the Kinetic Modelling Approach	
210	to Problems in Biotechnology and Biomedicine	2//
	TUDY OF THE MECHANISMS OF SALICYLATE	077
MS	IEPATOTOXIC EFFECT	277
	Kinetic Description of the Influence of Salicylates on the Krebs Cycle	278
	Impacts of Different Mechanisms of Salicylate Inhibition on	
	the Total Adverse Effect on the Krebs Cycle	283
	Prediction of Possible Ways to Recover Krebs Cycle	205
	Functionality	285

MULTIPLE TARGET IDENTIFICATION ANALYSIS FOR ANTI-TUBERCULOSIS DRUG DISCOVERY	28
Construction of a Kinetic Model of the Glyoxylate Shunt in Mycobacterium tuberculosis	288
Application of the Model to Identify Potential Targets for Therapeutic Drug Intervention	292
APPLICATION OF THE KINETIC MODEL OF ESCHERICHIA COLI BRANCHED-CHAIN AMINO ACID BIOSYNTHESIS TO OPTIMISE PRODUCTION OF ISOLEUCINE AND VALINE	
Prediction of Possible Genetic Changes That Should Maximise Isoleucine and Valine Production	294
Conclusion and Discussion	299
REFERENCES	303
INDEX	323

Mestow Shie Lelverily, 1989 Hosking firsts as research science