Table of Contents

About the Authors, xvii Introduction, xix

3

8

13

13

14

17

do

Снартея 1 - Systems Biology, Biological Knowledge and Kinetic Modelling

DEPENDENCE OF ENZYME REACTION RATE ON THE SUBSTRATE CONCENTRATION

WHAT ARE THE MODEL LIMITATIONS? OR, IN OTHER WORDS, WHAT CAN BE MODELLED?

CHAPTER 2 Cellular Networks Reconstruction and Static Modelling

PATHWAY RECONSTRUCTION THE HIGH-QUALITY NETWORK RECONSTRUCTION: DESCRIPTION OF THE PROCESS VISUAL NOTATIONS: THREE CATEGORIES

Communication between Diagrams22Tools and Methods for Static Modelling24Databases, Ontology and Standards for Pathway25Reconstruction25SBML27SBGN: A Visual Notation for Network Diagrams28ix

x Table of Contents

CHAPTER 3 Edinburgh Pathway Editor	
INTRODUCTION	30
FEATURE SUMMARY OF EPE	31
A FLEXIBLE VISUAL REPRESENTATION	35
CONCLUSION	47
CHAPTER 4 Construction and Verification of Kinetic Models	49
INTRODUCTION	49
BASIC PRINCIPLES OF KINETIC MODEL CONSTRUCTION	50

Development of a System of Ordinary Differential Equations Describing the Dynamics of a Metabolic System 51 Derivation of Rate Law of Enzymatic Reactions 58 BASIC PRINCIPLES OF KINETIC MODEL VERIFICATION 60 Verification of Kinetic Model Using in Vitro Experimental Data Measured for Purified Enzymes 60 Verification of the Kinetic Model Using in Vitro and in Vivo Experimental Data Measured for a Biochemical System 61 STUDY OF DYNAMIC AND REGULATORY PROPERTIES OF THE KINETIC MODEL 63 THE HIGH-OUALITY NETWORK RECONSTRUCTION: CHAPTER 5 Introduction to DBSolve 65

CREATION AND ANALYSIS OF THE MODELS USING

66

DOLVE. FUNCTIONAL DESCRIPTION	00
A General Look at the Interface	67
Description of the Example	67
The 'Metabolic Network' Tab: Creation of ODE System	
(Simple Method)	69
Creation of the ODE System Using RCT Format (The	
Alternative Method)	71
DBSolve Editors: RHS, Initial Values, Pools	72
RHS Editor	72
Initial Values	73
Pools	73

Table of Contents **x**i

100

102

107

109

109

110

111

ODE Tab: Solving the ODE System. Model Integration or in
Silico Experiments73Silico Experiments73Explicit Tabbed Page. Calculating Dependencies Determined
Explicitly77The Implicit Solver Tabbed Page. The Study of the System in
a Steady State79Experimental Data Tab: Creation of the Table with
Experimental Data81The Fitter Tabbed Page: Automatic Parameter
Fitting84

	Options Tab	86
	Advanced User Tab	87
	Example of Fitting	87
	The 'Options' Tabbed Page	90
	Some Examples from the CD	92
	Kinnelle Medelezifik-Salarumidaso impavižulje vielike of Cells	
Сна	APTER 6 Enzyme Kinetics Modelling	95
H	NTRODUCTION	95
В	BASIC PRINCIPLES OF MODELLING OF INDIVIDUAL	
E	NZYMES AND TRANSPORTERS	96
	Methods to Derive Rate Equation on the Basis of Enzyme	
	Catalytic Cycle	97
	Ouasi-Eauilibrium Approach	98

Quasi-Equilibrium Approach Quasi-Steady-State Approach Combined Quasi-Equilibrium, Quasi-Steady-State Approach

How to Express Parameters of the Catalytic Cycle in Terms of Kinetic Parameters

Examples of Rate Equations Expressed in Terms of Kinetic Parameters

Random Bi Bi Mechanism Ordered Uni Bi Mechanism Ping Pong Bi Bi Mechanism

xii Table of Contents

'HYPERBOLIC' ENZYMES	113
Kinetic Model of Histidinol Dehydrogenase	
from Escherichia coli	113
Available Experimental Data	113
Construction of the Catalytic Cycle	114
Derivation of Rate Equations	118
Estimation of Kinetic Parameters of the Rate Equations Using in Vitro Experimental Data	121
Kinetic Model of <i>Escherichia coli</i> Isocitrate Dehydrogenase and Its Regulation by Isocitrate Dehydrogenase	
Kinase/Phosphatase	124
Available Experimental Data	126
Kinetic Model of Isocitrate Dehydrogenase	126
Kinetic Model of IDH Kinase/Phosphatase	128
Model Predictions	136
Kinetic Model of β-Galactosidase from Escherichia coli Cells	139
Catalytic Cycle of <i>β</i> -Galactosidase Construction	139
Derivation of the Rate Equation of β -Galactosidase	141
Identification of the Parameters of the β -Galactosidase	
Rate Equation	147
Model Predictions	147
Kinetic Model of Imidazologlycerol-Phosphate Synthetase	
from Escherichia coli	150

Experimental Data 150 Quast-Steady-State Catalytic Cycle 153 Derivation of the Rate Equations 153 Evaluation of Parameters of the Rate Equations 158 Application of the Model to Predict How the Synthetase and Glutaminase Activities of Imidazologlycerol-Phosphate Synthetase Depend on Concentrations of the Substrates and Effectors 166 ALLOSTERIC ENZYMES 168 Principles Used for Description of the Functioning of Allosteric Enzymes 168

Kinetic Model of Phosphofructokinase-1 170 from Escherichia coli 172 Available Experimental Data Reconstruction of a Catalytic Cycle 173 of Phosphofructokinase-1 175 Derivation of a Rate Equation 178 Verification of the Model against Experimental Data 180 Predictions of the Model 187 TRANSPORTERS Kinetic Model of Mitochondrial Adenine Nucleotide

Tra	nslocase	187
naciusi	Experimental Data for Model Verification	188
1	Antiporter Functioning Mechanism	188
TERE	Kinetic Scheme	189
ism add	Derivation of Rate Equation	190
1	Dependence of Kinetic Constants on Membrane Potential	194
24	Estimation of Parameters	198
25	Model Verification	200
Ì	Model Predictions	202
HAPTER 7	7 Kinetic Models of Biochemical Pathways	207
MODE	ELLING OF THE MITOCHONDRIAL KREBS CYCLE	208
Mo	del Development	208
Des	scription of Individual Enzymes of the Krebs Cycle	210
	α-Ketoglutarate Dehydrogenase	212
1	Aspartate-Glutamate Carrier (AGC)	214
1	Aspartate Aminotransferase (AspAT)	219
	Succinate Thiokinase (STK)	221
28	Succinate Dehydrogenase	225
1	Fumarase (FUM)	227
i i	Malate Dehydrogenase (MDH)	228
(α–Ketoglutarate-Malate Carrier (KMC)	229
Esti	imation of Model Parameters from in Vivo Data	231

MODELING OF THE ESCHERICHIA COLI BRANCHED-	222		
CHAIN AMINO ACID BIOSYNTHESIS	233		
Model Development	233		
Derivation of the Rate Equations	235		
Detailed Description of Pathway Steps	237		
Influxes	237		
Threonine Dehydratase (TDH)	239		
Acetolactate Synthase (AHAS)	239		
Acetohydroxy Acid Isomeroreductase (IR)	241		
Dihydroxy-Acid Dehydratase (DHAD)	243		
Branched-Chain Amino Acid Transaminase (BCAT)	245		
NADP Recycling and Effluxes	246		
Evaluation of Maximal Reaction Rates	246		
CHAPTER 8 Modelling of Mitochondrial Energy Metabolism			
OXIDATIVE PHOSPHORYLATION AND SUPEROXIDE			
PRODUCTION IN MITOCHONDRIA			
DEVELOPMENT OF KINETIC MODELS			
DESCRIPTION OF INDIVIDUAL PROCESSES OF THE			
MODEL	262		
MODEL PREDICTIONS			
ODELLING. OBJIES MITOCHONNORIAL KREES, CYCLE 208			
CHAPTER 9 - Application of the Kinetic Modelling Approach			
to Problems in Biotechnology and Biomedicine	277		

STUDY OF THE MECHANISMS OF SALICYLATE HEPATOTOXIC EFFECT

Kinetic Description of the Influence of Salicylates on the Krebs Cycle

Impacts of Different Mechanisms of Salicylate Inhibition on
the Total Adverse Effect on the Krebs Cycle283Prediction of Possible Ways to Recover Krebs Cycle285

277

278

MULTIPLE TARGET IDENTIFICATION ANALYSIS FOR ANTI-TUBERCULOSIS DRUG DISCOVERY 287 Construction of a Kinetic Model of the Glyoxylate Shunt in Mycobacterium tuberculosis 288 Application of the Model to Identify Potential Targets for Therapeutic Drug Intervention 292 APPLICATION OF THE KINETIC MODEL OF ESCHERICHIA COLI BRANCHED-CHAIN AMINO ACID BIOSYNTHESIS TO OPTIMISE PRODUCTION OF ISOLEUCINE AND VALINE 293 Prediction of Possible Genetic Changes That Should Maximise Isoleucine and Valine Production 294 and a second related from the Stophysical Conclusion and Discussion 299 REFERENCES 303 qualistitative description of bloogical systems to able tech his Ph.D. In INDEX 323 model of millochentidruching developed all approach to describe regulation A Fieldored the A.N. Beložensky Unstitute of Physics - Tension, Block of