This monograph is an intertwined tale of eigenvalues and their use in unlocking a thousand secrets about graphs. The stories will be told—how the spectrum reveals fundamental properties of a graph, how spectral graph theory links the discrete universe to the continuous one through geometric, analytic and algebraic techniques, and how, through eigenvalues, theory and applications in communications and computer science come together in symbiotic harmony.

—from the Preface

Beautifully written and elegantly presented, this book is based on 10 lectures given at the CBMS workshop on spectral graph theory in June 1994 at Fresno State University. Chung's well-written exposition can be likened to a conversation with a good teacher—one who not only gives you the facts, but tells you what is really going on, why it is worth doing, and how it is related to familiar ideas in other areas. The monograph is accessible to the nonexpert who is interested in reading about this evolving area of mathematics.

AMS on the Web www.ams.org

Preface		xi
Chapter	1. Eigenvalues and the Laplacian of a graph	1
1.1.	Introduction	1
1.2.	The Laplacian and eigenvalues	2
1.3.	Basic facts about the spectrum of a graph	6
1.4.	Eigenvalues of weighted graphs	11
1.5.	Eigenvalues and random walks	14
Chapter	2. Isoperimetric problems	23
2.1.	History	23
2.2.	The Cheeger constant of a graph	24
2.3.	The edge expansion of a graph	25
2.4.	The vertex expansion of a graph	29
2.5.	A characterization of the Cheeger constant	32
2.6.	Isoperimetric inequalities for cartesian products	36
Chapter	3. Diameters and eigenvalues	43
3.1.	The diameter of a graph	43
3.2.	Eigenvalues and distances between two subsets	45
3.3.	Eigenvalues and distances among many subsets	49
3.4.	Eigenvalue upper bounds for manifolds	50
Chapter	4. Paths, flows, and routing	59

4.1.	Paths and sets of paths	59
4.2.	Flows and Cheeger constants	60
4.3.	Eigenvalues and routes with small congestion	62
4.4.	Routing in graphs	64
4.5.	Comparison theorems	68
~1		
	5. Eigenvalues and quasi-randomness	73
5.1.	Quasi-randomness	73
5.2.	The discrepancy property	75
5.3.	The deviation of a graph	81
5.4.	Quasi-random graphs	85
Chapter	6. Expanders and explicit constructions	91
6.1.	Probabilistic methods versus explicit constructions	91
6.2.	The expanders	92
6.3.	Examples of explicit constructions	97
6.4.	Applications of expanders in communication networks	102
6.5.	Constructions of graphs with small diameter and girth	105
6.6.	Weighted Laplacians and the Lovász ϑ function	107
Chapter	7. Eigenvalues of symmetrical graphs	113
7.1.	Symmetrical graphs	113
7.2.	Cheeger constants of symmetrical graphs	114
7.3.	Eigenvalues of symmetrical graphs	116
7.4.	Distance transitive graphs	118
7.5.	Eigenvalues and group representation theory	121
7.6.	The vibrational spectrum of a graph	123
Chapter	8. Eigenvalues of subgraphs with boundary conditions	127
8.1.	Neumann eigenvalues and Dirichlet eigenvalues	127

	CONTENTS	ix
8.2.	The Neumann eigenvalues of a subgraph	128
8.3.	Neumann eigenvalues and random walks	130
8.4.	Dirichlet eigenvalues	132
8.5.	A matrix-tree theorem and Dirichlet eigenvalues	133
8.6.	Determinants and invariant field theory	135
~1		100
Chapter	9. Harnack inequalities	139
9.1.	Eigenfunctions	139
9.2.	Convex subgraphs of homogeneous graphs	140
9.3.	A Harnack inequality for homogeneous graphs	142
9.4.	Harnack inequalities for Dirichlet eigenvalues	144
9.5.	Harnack inequalities for Neumann eigenvalues	146
9.6.	Eigenvalues and diameters	148
~1	10 TT 1	140
	r 10. Heat kernels	149
10.1.	The heat kernel of a graph and its induced subgraphs	149
10.2.	Basic facts on heat kernels	150
10.3.	An eigenvalue inequality	152
10.4.	Heat kernel lower bounds	154
10.5.	Matrices with given row and column sums	160
10.6.	Random walks and the heat kernel	165
~1		107
Chapte	r 11. Sobolev inequalities	167
11.1.	The isoperimetric dimension of a graph	167
11.2.	An isoperimetric inequality	169
11.3.	Sobolev inequalities	172
11.4.	Eigenvalue bounds	174
11.5.	Generalizations to weighted graphs and subgraphs	179
Chapter	12. Advanced techniques for random walks on graphs	181

12.1.	Several approaches for bounding convergence	181
12.2.	Logarithmic Sobolev inequalities	184
12.3.	A comparison theorem for the log-Sobolev constant	189
12.4.	Logarithmic Harnack inequalities	191
12.5.	The isoperimetric dimension and the Sobolev inequality	196
Bibliography		201
Index		210