about the book . . .

Investigations by Baire, Lebesgue, Hausdorff, Marczewski, and othes have culminated in various schemes for classifying point sets. This important reference/text brings together in a single theoretical framework the properties common to these classifications.

Providing a clear, thorough overview and analysis of the field, *Point Set Theory* utilizes the axiomatically determined notion of a category base for extending general topological theorems to a higher level of abstraction . . . axiomatically unifies analogies between Baire category and Lebesgue measure . . . enhances understanding of the material with numerous examples and discussions of abstract concepts . . . and more.

Imparting a solid foundation for the modern theory of real functions and associated areas, this authoritative resource is a vital reference for set theorists, logicians, analysts, and research mathematicians involved in topology, measure theory, or real analysis. It is an ideal text for graduate mathematics students in the above disciplines who have completed undergraduate courses in set theory and real analysis.

about the author . . .

JOHN C. Morgan II is Professor of Mathematics at the California State Polytechnic University, Pomona, California. He is the author of numerous research articles concerning topology, measure theory, and real analysis, and a member of the Polish Mathematical Society. Dr. Morgan received the B.A. degree (1964) in mathematics from San Diego State University, California, and M.A. degree (1968) in mathematics and Ph.D. degree (1971) in statistics from the University of California at Berkeley.

Preface		v
1	Category Bases I Initial Concepts II Singular, Meager, and Abundant Sets III Baire Sets IV Baire Functions	1 12 20 50
2	Point-Meager and Baire Bases I Definitions and Basic Properties II General Properties III Rare Sets IV The Duality Principle	70 70 74 82 94
3	Separable Bases I Separability	102 102
4	Cluster Points I Cluster Points II Topologies III Topologies Generated by a Topology and an Ideal IV Topological Properties	112 116 119 130

vii

		-1	5	т.	
-1	ш	r	ы	ъ.	
	w	М	я.	81	Б-
	~		7	7	۳.

Contents

5	Perfect Bases	144
	I Perfect Sets and Bases	144
	II Baire Sets	159
	III Baire Functions	173
6	Translation Bases	192
	I Definitions and Basic Properties	192
	II Arithmetic Operations	198
	III Constructions of Vitali and Hamel	215
	IV Groups and Periodic Functions	230
	V Congruent Sets	244
Bi	bliography	251
In	dex	276