Contents

Colcelus ist Euclidean Space Fasting

Chapter 0 Calculus in Euclidean Space

- 0.1 Euclidean Space
- 0.2 The Topology of Euclidean Space
- 0.3 Differentiation in \mathbb{R}^n
- 0.4 Tangent Space
- 0.5 Local Behavior of Differentiable Functions (Injective and Surjective Functions)

Chapter 1 Curves

- 1.1 Definitions
- 1.2 The Frenet Frame
- 1.3 The Frenet Equations
- 1.4 Plane Curves; Local Theory
- 1.5 Space Curves
- 1.6 Exercises

Chapter 2 Plane Curves: Global Theory

- 2.1 The Rotation Number
- 2.2 The Umlaufsatz
- 2.3 Convex Curves
- 2.4 Exercises and Some Further Results

6

8

8

10

11

15

17

20

Contents

.

Cha	pter 3	
Sur	faces: Local Theory	33
3.1	Definitions	33
3.2	The First Fundamental Form	35
3.3	The Second Fundamental Form	38
3.4	Curves on Surfaces	43
3.5	Principal Curvature, Gauss Curvature, and Mean Curvature	45
3.6	Normal Form for a Surface, Special Coordinates	49
3.7	Special Surfaces, Developable Surfaces	54
3.8	The Gauss and Codazzi-Mainardi Equations	61
3.9	Exercises and Some Further Results	66

Cha	pter 4	
Int	rinsic Geometry of Surfaces: Local Theory	73
4.1	Vector Fields and Covariant Differentiation	74
4.2	Parallel Translation	76
4.3	Geodesics	78
4.4	Surfaces of Constant Curvature	83
4.5	Examples and Exercises	87
Chapter 5		
Tw	o-dimensional Riemannian Geometry	89
5.1	Local Riemannian Geometry	90
5.2	The Tangent Bundle and the Exponential Map	95
5.3	Geodesic Polar Coordinates	99
5.4	Jacobi Fields	102
5.5	Manifolds	105
5.6	Differential Forms	111
5.7	Exercises and Some Further Results	119
Cha	pter 6	
The	e Global Geometry of Surfaces	123
6.1	Surfaces in Euclidean Space	123
6.2	Ovaloids	129
6.3	The Gauss-Bonnet Theorem	138
6.4	Completeness	144
6.5	Conjugate Points and Curvature	148
6.6	Curvature and the Global Geometry of a Surface	152
6.7	Closed Geodesics and the Fundamental Group	156
6.8	Exercises and Some Further Results	161
References		167
Index		171
Index of Symbols		177

xii