SUM TENDS

3 Microbursts and Magobursts, Windstoring, an anemaniscal and an a waivan volume and and Blawdowns a

The Population Consequences of Major lee Evenits noisunborm

Contents

Downdrafts, Mesocyclones, and Outflows and Interobuted and vogyT outflows Microbutsts Large-Scale Systems

xiii

xvii

xxi

6

10

vii

Contributors Preface Acknowledgments

1 Disturbance and Succession

Edward A. Johnson and Kiyoko Miyanishi

Introduction Disturbance as the Nemesis of Succession The Chronosequence Basis of Succession Coupling Disturbance and Vegetation Processes Conclusion

2 The Turbulent Wind in Plant and Forest Canopies 15 John J. Finnigan Possible Changes in Ice Storm Frequency, Under Introduction 15 The Structure of the Atmospheric Boundary Layer Over Land 17 Characteristics of Turbulent Flow In and Above Plant 22 Canopies Effects of Topography and Heterogeneity 36 Implications of This Velocity Structure for Canopy Disturbance 49 54 Summary

3	Microbursts and Macrobursts: Windstorms and Blowdowns	59
	Mark R. Hjelmfelt	
	Introduction	59
	Convective Storms and Downbursts	60
	Vertical Equation of Motion	68
	Climatology	71
	Downdrafts, Mesocyclones, and Outflows	75
	Microbursts	80
	Large-Scale Systems	87
	Summary	95

4 Understanding How the Interaction of Wind

	and Trees Results in Windthrow, Stem Breakage,	
	and Canopy Gap Formation	103
	Christopher P. Quine and Barry A. Gardiner	
	Introduction	103
	Theoretical Core	107
	Applied Force	110
	Resistive Force	123
	Direct Consequences	128
	Subsequent Impact of Windthrow, Stem Breakage,	
	and Gap/Patch Formation	137
	Summary and Conclusions	141
	Appendix 1: Glossary and Definitions	153
5	Mataaralagical Conditions Associated with Isa	
	Meteorological Conditions Associated with Ice	4
	Storm Damage to Forests	157
	Kaz Higuchi and Amir Shabbar	
	Introduction	157
	Synoptic Conditions for Freezing Rain	158

Synoptic Conditions for Freezing Kam 100 Climatology of Freezing Rain in Canada 167 Meteorological Evolution of Ice Storm '98 169 Possible Changes in Ice Storm Frequency Under a Warming Climate 176 Summary 177 **b** The Effect of Icing Events on the Death and **Regeneration of North American Trees** 181 David F. Greene, Kathleen F. Jones, and Olga J. Proulx Introduction 181 The Biomechanics of Branch Breakage During Ice Events With and Without Wind 185

	Ice Measurements in the Field	200
	A Review of the Literature on Tree Damage Caused	
	By Icing Events	201
	The Population Consequences of Major Ice Events	206
7	Disturbance Processes and Dynamics in Coastal Dunes	215
	Patrick A. Hesp and M. Luisa Martínez	
	Introduction	215
	Dune Types and Disturbance Types and Processes	216
	Conclusion	240
3	Coastal Dune Succession and the Reality of Dune	
	Processes	249

ix

Kinobo Minanishi and Edward A Johnson

	Riyoko miyanishi ana Lawara n. johnson	
	Introduction	249
	Traditional Dune Succession Hypothesis	252
	Problems with the Dune Succession Hypothesis	255
	Process-Response Alternative to Traditional Succession	
	Hypothesis	261
	Conclusion	273
9	Fluvial Geomorphic Disturbances and Life	
	History Traits of Riparian Tree Species	283
	Futoshi Nakamura and Satomi Inahara	
	Introduction	283
	Geomorphic Classification of Riparian Zones	
	and Disturbance Regimes in A Catchment	286
	Disturbance, Reliability of Regeneration Habitat, and	
	Life History of Dominant Tree Species	290
	Conclusion	304
0		

10 Water Level Changes in Ponds and Lakes:
The Hydrological Processes311Masaki Hayashi and Garth van der Kamp
Introduction311Water Balance312Case Study: Northern Prairie Wetlands329Conclusions334

11 Development of Post-Disturbance Vegetation in Prairie Wetlands
Arnold G. van der Valk
Introduction
Wet-Dry Cycles
Marsh Ecology Research Program
Coenocline Development: Same Preand Post-Disturbance Water Levels
Coenocline Development: Different Preand Post-Disturbance Water Levels
Models of Coenocline Development
Conclusions

X

341

341344345

348

357 362 366

12	Modeling Heating Effects	371
	Geoffry N. Mercer and Rodney O. Weber	
	Introduction	371
	Conservation Laws	372
	Simple Examples	373
	Application to More Realistic Scenarios	382
	Case Study: A Model of Seed Survival	387
	Conclusion	392
	Appendix: Notation	393
13	Fire Effects on Grasslands	397
	Paul H. Zedler	
	Introduction	397
	The Grass Growth Form	399
	Regeneration from Seed	403
	Grasses as Fuel, Mulch, and Forage	405
	Drought Disturbance: A Primary Driver	413

415 Direct Fire Effects Grassfire and Nutrients 424 Grasses and Woody Plants 425 A Final Caution—Grasses and Fires 430 **14** Wildfire and Tree Population Processes 441 Sheri L. Gutsell and Edward A. Johnson Introduction 441 Wildfire Processes and Characteristics 443 Local Populations and Processes 455 **Regional Populations and Processes** 471 Conclusions 477

15	Insect Defoliators as Periodic Disturbances in Northern Forest Ecosystems	487
	Barry J. Cooke, Vincent G. Nealis, and Jacques Régnière	
	Introduction	487
	Defoliating Insects as a Distinct Class of Forest	
	Disturbance	491
	The Process of Insect Disturbance	495
	Population Dynamics of Foliage-Grazers	502
	Conclusion	518
16	Dynamics of Mountain Pine Beetle Outbreaks	527
	Justin Heavilin, James Powell, and Jesse A. Logan	
	Introduction	527
	Derivation of the Red Top Model	531
	Results of the Fully Developed Model	547
	Discussion and Conclusion	550
17	Relationship Between Spruce Budworm Outbreaks	
	and Forest Dynamics in Eastern North America	555
	Hubert Morin, Yves Jardon, and Réjean Gagnon	555
	Introduction	555
	History of Spruce Budworm Outbreaks Over the	555
	Past 8600 Years	559
	Variation in Temporal and Spatial Dynamics of	557
	Outbreaks: Reflection of Changes in Forest Structure	564
	Outbreaks: Reflection of Changes in Porest structure	
18	Impact of Beaver (Castor canadensis Kuhl) Foraging	
	on Species Composition of Boreal Forests Noble T. Donkor	579
	Introduction	579

Herbivory in Boreal Forests581Temporal Changes in Beaver Populations582Traditional Understanding of Beaver Foraging Impact on
Plant Community Structure585Understanding Beaver Foraging Impacts on
Composition and Dynamics of the Boreal Forest588Conclusion597

19	Beaver, Willow Shrubs, and Floods	603
	J. Dungan Smith	
	Introduction	603
	Background	607
	Theory for Interaction of Flow and Shrubs	622
	Model Results	638
	Discussion	648
	Summary and Conclusions	667
		673

xii

ITE Discussion and Conclusion