

Contents

Preface.....	xv
Acknowledgements	xviii

1 FUNDAMENTALS OF DNA, CHROMOSOMES, AND CELLS.....1

1.1 THE STRUCTURE AND FUNCTION OF NUCLEIC ACIDS.....2

General concepts: the genetic material, genomes, and genes	2
The underlying chemistry of nucleic acids	2
Base pairing and the double helix	4
DNA replication and DNA polymerases.....	5
Genes, transcription, and the central dogma of molecular biology.....	7

1.2 THE STRUCTURE AND FUNCTION OF CHROMOSOMES.....8

Why we need highly structured chromosomes, and how they are organized	8
Chromosome function: replication origins, centromeres, and telomeres.....	9

1.3 DNA AND CHROMOSOMES IN CELL DIVISION AND THE CELL CYCLE

10

Differences in DNA copy number between cells.....	10
The cell cycle and segregation of replicated chromosomes and DNA molecules.....	11

3 PRINCIPLES DETERMINING COPY NUMBER.....	12
3.1 AMPLIFYING DNA.....	12
3.2 CONCLUDING COMMENTS.....	12
4.1 PRINCIPLES OF DNA REPAIR.....	13
4.2 DNA REPAIR AND HUMAN DISEASES.....	13
4.3 CONCLUDING COMMENTS.....	14
5.1 PRINCIPLES OF GENOME ORGANIZATION.....	15
5.2 HUMAN GENOME ORGANIZATION.....	15
5.3 CONCLUDING COMMENTS.....	16
6.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	17
6.2 HUMAN CHROMOSOME SEPARATION.....	17
6.3 CONCLUDING COMMENTS.....	18
7.1 PRINCIPLES OF CELL CYCLE REGULATION.....	19
7.2 HUMAN CELL CYCLE REGULATION.....	19
7.3 CONCLUDING COMMENTS.....	20
8.1 PRINCIPLES OF DNA REPLICATION.....	21
8.2 HUMAN DNA REPLICATION.....	21
8.3 CONCLUDING COMMENTS.....	22
9.1 PRINCIPLES OF DNA POLYMERASES.....	23
9.2 HUMAN DNA POLYMERASES.....	23
9.3 CONCLUDING COMMENTS.....	24
10.1 PRINCIPLES OF TRANSCRIPTION.....	25
10.2 HUMAN TRANSCRIPTION.....	25
10.3 CONCLUDING COMMENTS.....	26
11.1 PRINCIPLES OF RNA PROCESSING.....	27
11.2 HUMAN RNA PROCESSING.....	27
11.3 CONCLUDING COMMENTS.....	28
12.1 PRINCIPLES OF RNA TRANSLATION.....	29
12.2 HUMAN RNA TRANSLATION.....	29
12.3 CONCLUDING COMMENTS.....	30
13.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	31
13.2 HUMAN CHROMOSOME SEPARATION.....	31
13.3 CONCLUDING COMMENTS.....	32
14.1 PRINCIPLES OF CELL CYCLE REGULATION.....	33
14.2 HUMAN CELL CYCLE REGULATION.....	33
14.3 CONCLUDING COMMENTS.....	34
15.1 PRINCIPLES OF DNA REPLICATION.....	35
15.2 HUMAN DNA REPLICATION.....	35
15.3 CONCLUDING COMMENTS.....	36
16.1 PRINCIPLES OF DNA POLYMERASES.....	37
16.2 HUMAN DNA POLYMERASES.....	37
16.3 CONCLUDING COMMENTS.....	38
17.1 PRINCIPLES OF TRANSCRIPTION.....	39
17.2 HUMAN TRANSCRIPTION.....	39
17.3 CONCLUDING COMMENTS.....	40
18.1 PRINCIPLES OF RNA PROCESSING.....	41
18.2 HUMAN RNA PROCESSING.....	41
18.3 CONCLUDING COMMENTS.....	42
19.1 PRINCIPLES OF RNA TRANSLATION.....	43
19.2 HUMAN RNA TRANSLATION.....	43
19.3 CONCLUDING COMMENTS.....	44
20.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	45
20.2 HUMAN CHROMOSOME SEPARATION.....	45
20.3 CONCLUDING COMMENTS.....	46
21.1 PRINCIPLES OF CELL CYCLE REGULATION.....	47
21.2 HUMAN CELL CYCLE REGULATION.....	47
21.3 CONCLUDING COMMENTS.....	48
22.1 PRINCIPLES OF DNA REPLICATION.....	49
22.2 HUMAN DNA REPLICATION.....	49
22.3 CONCLUDING COMMENTS.....	50
23.1 PRINCIPLES OF DNA POLYMERASES.....	51
23.2 HUMAN DNA POLYMERASES.....	51
23.3 CONCLUDING COMMENTS.....	52
24.1 PRINCIPLES OF TRANSCRIPTION.....	53
24.2 HUMAN TRANSCRIPTION.....	53
24.3 CONCLUDING COMMENTS.....	54
25.1 PRINCIPLES OF RNA PROCESSING.....	55
25.2 HUMAN RNA PROCESSING.....	55
25.3 CONCLUDING COMMENTS.....	56
26.1 PRINCIPLES OF RNA TRANSLATION.....	57
26.2 HUMAN RNA TRANSLATION.....	57
26.3 CONCLUDING COMMENTS.....	58
27.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	59
27.2 HUMAN CHROMOSOME SEPARATION.....	59
27.3 CONCLUDING COMMENTS.....	60
28.1 PRINCIPLES OF CELL CYCLE REGULATION.....	61
28.2 HUMAN CELL CYCLE REGULATION.....	61
28.3 CONCLUDING COMMENTS.....	62
29.1 PRINCIPLES OF DNA REPLICATION.....	63
29.2 HUMAN DNA REPLICATION.....	63
29.3 CONCLUDING COMMENTS.....	64
30.1 PRINCIPLES OF DNA POLYMERASES.....	65
30.2 HUMAN DNA POLYMERASES.....	65
30.3 CONCLUDING COMMENTS.....	66
31.1 PRINCIPLES OF TRANSCRIPTION.....	67
31.2 HUMAN TRANSCRIPTION.....	67
31.3 CONCLUDING COMMENTS.....	68
32.1 PRINCIPLES OF RNA PROCESSING.....	69
32.2 HUMAN RNA PROCESSING.....	69
32.3 CONCLUDING COMMENTS.....	70
33.1 PRINCIPLES OF RNA TRANSLATION.....	71
33.2 HUMAN RNA TRANSLATION.....	71
33.3 CONCLUDING COMMENTS.....	72
34.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	73
34.2 HUMAN CHROMOSOME SEPARATION.....	73
34.3 CONCLUDING COMMENTS.....	74
35.1 PRINCIPLES OF CELL CYCLE REGULATION.....	75
35.2 HUMAN CELL CYCLE REGULATION.....	75
35.3 CONCLUDING COMMENTS.....	76
36.1 PRINCIPLES OF DNA REPLICATION.....	77
36.2 HUMAN DNA REPLICATION.....	77
36.3 CONCLUDING COMMENTS.....	78
37.1 PRINCIPLES OF DNA POLYMERASES.....	79
37.2 HUMAN DNA POLYMERASES.....	79
37.3 CONCLUDING COMMENTS.....	80
38.1 PRINCIPLES OF TRANSCRIPTION.....	81
38.2 HUMAN TRANSCRIPTION.....	81
38.3 CONCLUDING COMMENTS.....	82
39.1 PRINCIPLES OF RNA PROCESSING.....	83
39.2 HUMAN RNA PROCESSING.....	83
39.3 CONCLUDING COMMENTS.....	84
40.1 PRINCIPLES OF RNA TRANSLATION.....	85
40.2 HUMAN RNA TRANSLATION.....	85
40.3 CONCLUDING COMMENTS.....	86
41.1 PRINCIPLES OF CHROMOSOME SEPARATION.....	87
41.2 HUMAN CHROMOSOME SEPARATION.....	87
41.3 CONCLUDING COMMENTS.....	88
42.1 PRINCIPLES OF CELL CYCLE REGULATION.....	89
42.2 HUMAN CELL CYCLE REGULATION.....	89
42.3 CONCLUDING COMMENTS.....	90
43.1 PRINCIPLES OF DNA REPLICATION.....	91
43.2 HUMAN DNA REPLICATION.....	91
43.3 CONCLUDING COMMENTS.....	92
44.1 PRINCIPLES OF DNA POLYMERASES.....	93
44.2 HUMAN DNA POLYMERASES.....	93
44.3 CONCLUDING COMMENTS.....	94
45.1 PRINCIPLES OF TRANSCRIPTION.....	95
45.2 HUMAN TRANSCRIPTION.....	95
45.3 CONCLUDING COMMENTS.....	96
46.1 PRINCIPLES OF RNA PROCESSING.....	97
46.2 HUMAN RNA PROCESSING.....	97
46.3 CONCLUDING COMMENTS.....	98
47.1 PRINCIPLES OF RNA TRANSLATION.....	99
47.2 HUMAN RNA TRANSLATION.....	99
47.3 CONCLUDING COMMENTS.....	100

2.3 WORKING OUT THE DETAILS OF OUR GENOME AND WHAT THEY MEAN	35	3 PRINCIPLES UNDERLYING CORE DNA TECHNOLOGIES.....	57
The Human Genome Project: working out the details of the nuclear genome.....	35	3.1 AMPLIFYING DNA BY DNA CLONING	58
What the sequence didn't tell us and the goal of identifying all functional human DNA sequences.....	37	Amplifying desired DNA within bacterial cells.....	59
2.4 A QUICK TOUR OF SOME ELECTRONIC RESOURCES USED TO INTERROGATE THE HUMAN GENOME SEQUENCE AND GENE PRODUCTS	39	The need for vector DNA molecules.....	59
Gene nomenclature and the HGNC gateway.....	40	Physical clone separation	60
Databases storing nucleotide and protein sequences	40	The need for restriction nucleases	60
Finding related nucleotide and protein sequences	40	DNA libraries and the uses and limitations of DNA cloning.....	61
Links to clinical databases	42		
2.5 THE ORGANIZATION AND EVOLUTION OF THE HUMAN GENOME.....	42	3.2 AMPLIFYING DNA USING THE POLYMERASE CHAIN REACTION (PCR)	62
A brief overview of the evolutionary mechanisms that shaped our genome.....	42	Basics of the polymerase chain reaction (PCR)	62
How much of our genome is functionally significant?	43	Quantitative PCR and real-time PCR.....	63
The mitochondrial genome: economical usage but limited autonomy	44	3.3 PRINCIPLES OF NUCLEIC ACID HYBRIDIZATION.....	63
Gene distribution in the human genome.....	45	Formation of artificial heteroduplexes.....	66
The extent of repetitive DNA in the human genome	46	Hybridization assays: using known nucleic acids to find related sequences in a test nucleic acid population	66
The organization of gene families.....	47	Microarray hybridization: large-scale parallel hybridization to immobilized probes.....	70
The significance of gene duplication and repetitive coding DNA.....	50		
Highly repetitive noncoding DNA in the human genome	51	3.4 PRINCIPLES OF DNA SEQUENCING.....	71
SUMMARY.....	53	Dideoxy DNA sequencing	72
QUESTIONS	54	Massively parallel DNA sequencing (next-generation sequencing)	74
FURTHER READING.....	54	SUMMARY.....	75
4 PRINCIPLES OF GENETIC VARIATION	77	QUESTIONS	76
4.1 DNA SEQUENCE VARIATION ORIGINS AND DNA REPAIR	79	FURTHER READING.....	76
Genetic variation arising from errors in chromosome and DNA function....	79		

Various endogenous and exogenous sources can cause damage to DNA by altering its chemical structure	81
The wide range of DNA repair mechanisms.....	82
Repair of DNA damage or altered sequence on a single DNA strand	82
Repair of DNA lesions that affect both DNA strands.....	83
Undetected DNA damage, DNA damage tolerance, and translesion synthesis	84
4.2 POPULATION GENOMICS AND THE SCALE OF HUMAN GENETIC VARIATION	87
DNA variants, polymorphisms, and human population genomics.....	87
Small-scale variation: single nucleotide variants and small insertions and deletions	89
Microsatellites and other variable number of tandem repeat (VNTR) polymorphisms.....	90
Structural variation and low copy number variation	91
Taking stock of human genetic variation.....	92
4.3 FUNCTIONAL GENETIC VARIATION AND PROTEIN POLYMORPHISM.....	93
The vast majority of genetic variation has a neutral effect on the phenotype, but a small fraction is harmful	93
Different types of Darwinian natural selection operate in human lineages	94
Generating protein diversity by gene duplication: the example of olfactory receptor genes	98
4.4 EXTRAORDINARY GENETIC VARIATION IN THE IMMUNE SYSTEM.....	99
Pronounced genetic variation in four classes of immune system proteins	99
Programmed and random post-zygotic genetic variation.....	100
Somatic mechanisms allow cell-specific production of immunoglobulins and T-cell receptors.....	100
MHC (HLA) proteins: functions and polymorphism.....	102
The medical importance of the HLA system	104
SUMMARY	107
QUESTIONS	108
FURTHER READING.....	108
5 SINGLE-GENE DISORDERS: INHERITANCE PATTERNS, PHENOTYPE VARIABILITY, AND ALLELE FREQUENCIES	109
5.1 INTRODUCTION: TERMINOLOGY, ELECTRONIC RESOURCES, AND PEDIGREES	110
Background terminology and electronic resources with information on single-gene disorders	110
Investigating family history of disease and recording pedigrees	111
5.2 THE BASICS OF MENDELIAN AND MITOCHONDRIAL DNA INHERITANCE PATTERNS	112
Autosomal dominant inheritance	112
Autosomal recessive inheritance	113
Sex-linked inheritance	116
Matrilineal inheritance for mitochondrial DNA disorders	121
5.3 UNCERTAINTY, HETEROGENEITY, AND VARIABLE EXPRESSION OF MENDELIAN PHENOTYPES.....	122
Difficulties in defining the mode of inheritance in small pedigrees	122
Heterogeneity in the correspondence between phenotypes and the underlying genes and mutations	124

2.3 Nonpenetrance and age-related penetrance	126
5.4 ALLELE FREQUENCIES IN POPULATIONS.....	129
Allele frequencies and the Hardy-Weinberg law	130
Applications and limitations of the Hardy-Weinberg law	131
Ways in which allele frequencies change in populations	132
Population bottlenecks and founder effects.....	133
Mutation versus selection in determining allele frequencies.....	135
Heterozygote advantage: when natural selection favors carriers of recessive disease	136
SUMMARY.....	137
QUESTIONS	138
FURTHER READING.....	138
6 PRINCIPLES OF GENE REGULATION AND EPIGENETICS	139
The two fundamental types of gene regulation	139
<i>Cis</i> -acting and <i>trans</i> -acting effects in gene regulation	140
6.1 GENETIC REGULATION OF GENE EXPRESSION	141
Promoters: the major on–off switches in genes	141
Modulating transcription and tissue-specific regulation	142
Transcription factor binding and specificity	143
Genetic regulation during RNA processing: RNA splicing and RNA editing	144
Translational regulation by <i>trans</i> -acting regulatory proteins	147
Post-transcriptional gene silencing by microRNAs	148
Repressing the repressors: competing endogenous RNAs sequester miRNA	148
6.2 CHROMATIN MODIFICATION AND EPIGENETIC FACTORS IN GENE REGULATION.....	150
An overview of the molecular basis of epigenetic mechanisms.....	150
How changes in chromatin structure produce altered gene expression	151
Histone modification and histone substitution in nucleosomes	152
Modified histones and histone variants affect chromatin structure	154
The function of DNA methylation in mammalian cells	155
DNA methylation: mechanisms, heritability, and global roles during early development and gametogenesis	156
Long noncoding RNAs in mammalian epigenetic regulation	158
Genomic imprinting: differential expression of maternally and paternally inherited alleles.....	160
X-chromosome inactivation: compensating for sex differences in gene dosage	163
6.3 ABNORMAL EPIGENETIC REGULATION IN MENDELIAN DISORDERS AND UNIPARENTAL DISOMY	165
Principles of epigenetic dysregulation	165
“Chromatin diseases” due to mutations in genes specifying chromatin modifiers	167
Disease resulting from dysregulation of heterochromatin	168
Uniparental disomy and disorders of imprinting	171
Abnormal gene regulation at imprinted loci.....	172
SUMMARY.....	176
QUESTIONS	176
FURTHER READING.....	177

7 HOW GENETIC VARIATION IN DNA AND CHROMOSOMES CAUSES DISEASE	179	Disease arising from sequence exchanges between distantly located repeats in nuclear DNA	202
7.1 AN OVERVIEW OF HOW GENETIC VARIATION RESULTS IN DISEASE	180	7.5 CHROMOSOME ABNORMALITIES 204	
The importance of repeat sequences in triggering pathogenesis.....	182	Structural chromosomal abnormalities	206
7.2 PATHOGENIC NUCLEOTIDE SUBSTITUTIONS AND TINY INSERTIONS AND DELETIONS	183	Chromosomal abnormalities involving gain or loss of complete chromosomes	209
Pathogenic single nucleotide substitutions within coding sequences.....	183	7.6 MOLECULAR PATHOLOGY OF MITOCHONDRIAL DISORDERS	212
Mutations that result in premature termination codons.....	185	Mitochondrial disorders due to mtDNA mutation show maternal inheritance and variable proportions of mutant genotypes.....	213
Genesis and frequency of pathogenic point mutations.....	188	The two major classes of pathogenic DNA variant in mtDNA: large deletions and point mutations.....	215
Surveying and curating point mutations that cause disease	191	7.7 EFFECTS ON THE PHENOTYPE OF PATHOGENIC VARIANTS IN NUCLEAR DNA	217
7.3 PATHOGENESIS DUE TO VARIATION IN SHORT TANDEM REPEAT COPY NUMBER	192	Mutations affecting how a single gene works: an overview of loss of function and gain of function.....	218
The two main classes of pathogenic variation in short tandem repeat copy-number.....	192	The effect of pathogenic variants depends on how the products of alleles interact: dominance and recessiveness revisited	220
Dynamic disease-causing mutations due to unstable expansion of short tandem repeats	194	Gain-of-function and loss-of-function mutations in the same gene can produce different phenotypes	223
Unstable expansion of short tandem repeats can cause disease in different ways	197	Multiple gene dysregulation resulting from aneuploidies and mutations in regulatory genes	224
7.4 PATHOGENESIS TRIGGERED BY LONG TANDEM REPEATS AND INTERSPERSED REPEATS	198	7.8 A PROTEIN STRUCTURE PERSPECTIVE OF MOLECULAR PATHOLOGY	225
Pathogenic exchanges between repeats occurs in both nuclear DNA and mtDNA	198	Pathogenesis arising from protein misfolding	226
Nonallelic homologous recombination and transposition	199		
Pathogenic sequence exchanges between chromatids at mispaired tandem repeats	199		

The many different ways in which protein aggregation can result in disease.....	226
7.9 GENOTYPE-PHENOTYPE CORRELATIONS AND WHY MONOGENIC DISORDERS ARE OFTEN NOT SIMPLE	231
The difficulty in getting reliable genotype-phenotype correlations.....	231
Modifier genes and environmental factors: common explanations for poor genotype-phenotype correlations.....	232
SUMMARY.....	236
QUESTIONS	237
FURTHER READING.....	237
8 IDENTIFYING DISEASE GENES AND GENETIC SUSCEPTIBILITY TO COMPLEX DISEASE.....	239
8.1 IDENTIFYING GENES IN MONOGENIC DISORDERS	240
A historical overview of identifying genes in monogenic disorders	240
Linkage analysis to map genes for monogenic disorders to defined subchromosomal regions.....	241
Chromosome abnormalities and other large-scale mutations as routes to identifying disease genes..	248
Exome sequencing: let's not bother getting a position for disease genes!.....	248
8.2 APPROACHES TO MAPPING AND IDENTIFYING GENETIC SUSCEPTIBILITY TO COMPLEX DISEASE.....	251
The polygenic and multifactorial nature of common genetic disorders	252
Difficulties with lack of penetrance and phenotype classification in complex disease.....	255
6.2 ESTIMATING HERITABILITY: THE CONTRIBUTION MADE BY GENETIC FACTORS TO THE VARIANCE OF COMPLEX DISEASES	256
The very limited success of linkage analyses in identifying genes underlying complex genetic diseases	259
The fundamentals of allelic association and the importance of HLA-disease associations	262
Linkage disequilibrium as the basis of allelic associations.....	266
How genomewide association studies are carried out	270
Moving from candidate subchromosomal region to identify causal genetic variants in complex disease can be challenging	273
The limitations of GWA studies and the issue of missing heritability	274
Alternative genome-wide studies and the role of rare variants and copy number variants in complex disease.....	276
The assessment and prediction of risk for common genetic diseases and the development of polygenic risk scores	278
8.3 ASPECTS OF THE GENETIC ARCHITECTURE OF COMPLEX DISEASE AND THE CONTRIBUTIONS OF ENVIRONMENTAL AND EPIGENETIC FACTORS	280
Common neurodegenerative disease: from monogenic to polygenic disease	283
The importance of immune system pathways in common genetic disease.....	287
The importance of protective factors and how a susceptibility factor for one complex disease may be a protective factor for another disease.....	289

Gene-environment interactions in complex disease.....	290
Epigenetics in complex disease and aging: significance and experimental approaches.....	294
SUMMARY.....	297
QUESTIONS	298
FURTHER READING.....	298
9 GENETIC APPROACHES TO TREATING DISEASE.....	301
9.1 AN OVERVIEW OF TREATING GENETIC DISEASE AND OF GENETIC TREATMENT OF DISEASE.....	303
Three different broad approaches to treating genetic disorders.....	303
Very different treatment options for different inborn errors of metabolism.....	305
Genetic treatment of disease may be conducted at many different levels	309
9.2 GENETIC INPUTS INTO TREATING DISEASE WITH SMALL MOLECULE DRUGS AND THERAPEUTIC PROTEINS.....	310
An overview of how genetic differences affect the metabolism and performance of small molecule drugs.....	311
Phenotype differences arising from genetic variation in drug metabolism.....	313
Genetic variation in enzymes that work in phase II drug metabolism....	317
Altered drug responses resulting from genetic variation in drug targets	318
When genotypes at multiple loci in patients are important in drug treatment: the example of warfarin	321
Translating genetic advances: from identifying novel disease genes to therapeutic small molecule drugs....	322

Translating genomic advances and developing generic drugs as a way of overcoming the problem of too few drug targets.....	325
Developing biological drugs: therapeutic proteins produced by genetic engineering	325
Genetically engineered therapeutic antibodies with improved therapeutic potential.....	326
9.3 PRINCIPLES OF GENE AND CELL THERAPY	329
Two broad strategies in somatic gene therapy.....	329
The delivery problem: designing optimal and safe strategies for getting genetic constructs into the cells of patients	330
Different ways of delivering therapeutic genetic constructs, and the advantages of <i>ex vivo</i> gene therapy.....	334
Viral delivery of therapeutic gene constructs: relatively high efficiency but safety concerns.....	336
Virus vectors used in gene therapy	336
The importance of disease models for testing potential therapies in humans.....	337
9.4 GENE THERAPY FOR INHERITED DISORDERS: PRACTICE AND FUTURE DIRECTIONS.....	340
Multiple successes for <i>ex vivo</i> gene supplementation therapy targeted at hematopoietic stem cells	340
<i>In vivo</i> gene therapy: approaches, barriers, and recent successes	342
An overview of RNA and oligonucleotide therapeutics	344
RNA interference therapy	347
Future therapeutic prospects using CRISPR-Cas gene editing.....	349
Therapeutic applications of stem cells and cell reprogramming.....	353
Obstacles to overcome in cell therapy.....	353

A special case: preventing transmission of severe mitochondrial DNA disorders by mitochondrial replacement.....	355
SUMMARY.....	356
QUESTIONS	358
FURTHER READING.....	358
10 CANCER GENETICS AND GENOMICS.....	361
10.1 FUNDAMENTAL CHARACTERISTICS AND EVOLUTION OF CANCER.....	362
The defining features of unregulated cell growth and cancer.....	362
Why cancers are different from other diseases: the contest between natural selection operating at the level of the cell and the level of the organism	364
Cancer cells acquire several distinguishing biological characteristics during their evolution.....	366
The initiation and multistage nature of cancer evolution and why most human cancers develop over many decades	369
Intratumor heterogeneity arises through cell infiltration, clonal evolution, and differentiation of cancer stem cells.....	372
10.2 ONCOGENES AND TUMOR SUPPRESSOR GENES	375
Two fundamental classes of cancer gene	375
Viral oncogenes and the natural roles of cellular oncogenes.....	376
How normal cellular proto-oncogenes are activated to become cancer genes	376
Tumor suppressor genes: normal functions, the two-hit paradigm, and loss of heterozygosity in linked markers	380
The key roles of gatekeeper tumor suppressor genes in suppressing G ₁ -S transition in the cell cycle.....	383
The additional role of p53 in activating different apoptosis pathways to ensure that rogue cells are destroyed	384
Tumor suppressor involvement in rare familial cancers and non-classical tumor suppressors.....	384
The significance of miRNAs and long noncoding RNAs in cancer	388
10.3 GENOMIC INSTABILITY AND EPIGENETIC DYSREGULATION IN CANCER	389
Different types of chromosomal instability in cancer.....	390
Deficiency in mismatch repair results in unrepaired replication errors and global DNA instability....	392
Different classes of cancer susceptibility gene according to epigenetic function, epigenetic dysregulation, and epigenome–genome interaction	395
10.4 NEW INSIGHTS FROM GENOME-WIDE STUDIES OF CANCERS	397
Genome sequencing has revealed extraordinary mutational diversity in tumors and insights into cancer evolution.....	398
Defining the landscape of driver mutations in cancer and establishing a complete inventory of cancer-susceptibility genes.....	401
Tracing the mutational history of cancers: just one of the diverse applications of single-cell genomics and transcriptomics in cancer.....	404
Genome-wide RNA sequencing enables insights into the link	

between cancer genomes and cancer biology and aids tumor classification.....	405	Detecting pathogenic moderate- to small-scale deletions and duplications at defined loci is often achieved using the MLPA or ddPCR methods.....	430
10.5 GENETIC INROADS INTO CANCER THERAPY.....	407	Two very different routes towards universal genome-wide screens for structural variation: genome-wide sequencing and optical genome mapping.....	433
Targeted anticancer therapies are directed against key cancer cell proteins involved in oncogenesis or in escaping immunosurveillance.....	408		
CAR-T Cell therapy and the use of genetically engineered T cells to treat cancer.....	410		
The molecular basis of tumor recurrence and the evolution of drug resistance in cancers.....	411		
The promise of combinatorial drug therapies	413		
SUMMARY.....	413		
QUESTIONS	415		
FURTHER READING.....	415		
11 GENETIC AND GENOMIC TESTING IN HEALTHCARE: PRACTICAL AND ETHICAL ASPECTS 417			
11.1 AN OVERVIEW OF GENETIC TESTING.....	418		
The different source materials and different levels of genetic testing	419	Diverse methods permit rapid genotyping of specific point mutations	436
11.2 GENETIC TESTING FOR CHROMOSOME ABNORMALITIES AND PATHOGENIC STRUCTURAL VARIATION	423	The advantages of multiplex genotyping	438
Screening for aneuploidies using quantitative fluorescence PCR.....	424	Mutation scanning: from genes and gene panels to whole exome and whole genome sequencing	440
Detecting large-scale copy number variants using chromosome SNP microarray analysis.....	425	Interpreting and validating sequence variants can be aided by extensive online resources	442
Detecting and scanning for oncogenic fusion genes using, respectively, chromosome FISH and targeted RNA sequencing.....	428	Detecting aberrant DNA methylation profiles associated with disease.....	448
11.3 GENETIC AND GENOMIC TESTING FOR PATHOGENIC POINT MUTATIONS AND DNA METHYLATION TESTING	433		
		11.4 GENETIC AND GENOMIC TESTING: ORGANIZATION OF SERVICES AND PRACTICAL APPLICATIONS.....	450
		The developing transformation of genetic services into mainstream genomic medicine	450
		An overview of diagnostic and pre-symptomatic or predictive genetic testing	453
		The different ways in which diagnosis of genetic conditions is carried out in the prenatal period ...	456
		Preimplantation genetic testing is carried out to prevent	

the transmission of a harmful genetic defect using <i>in vitro</i> fertilization	460
Noninvasive prenatal testing (NIPT) and whole genome testing of the fetus.....	461
An overview of the different types of genetic screening.....	463
Pregnancy screening for fetal abnormalities.....	463
Newborn screening allows the possibility of early medical intervention.....	464
Different types of carrier screening can be carried out for autosomal recessive conditions.....	466
New genomic technologies are being exploited in cancer diagnostics.....	468
Bypassing healthcare services: the rise of direct-to-consumer (DTC) genetic testing.....	470
The downsides of improved sensitivity through whole genome sequencing: increased uncertainty about what variants mean.....	472
11.5 ETHICAL, LEGAL, AND SOCIETAL ISSUES (ELSI) IN GENETIC TESTING.....	473
Genetic information as family information.....	473
Consent issues in genetic testing	474
The generation of genetic data is outstripping the ability to provide clinical interpretation	477
New disease gene discovery and changing concepts of diagnosis	479
Complications in diagnosing mitochondrial disease	479
Complications arising from incidental, additional, secondary, or unexpected information.....	480
Consent issues in testing children	482
Ethical and societal issues in prenatal diagnosis and testing	483
Ethical and social issues in some emerging treatments for genetic disorders	485
The ethics of germline gene modification for gene therapy and genetic enhancement.....	487
SUMMARY.....	489
QUESTIONS	491
FURTHER READING.....	491
Glossary	493
Index.....	509