Contents

Part I Basic Concepts 1

Hardware and Applications; Synchronization; Program Properties

Chapter 1 Sequential Programming 7

Thomas Philogophers, Readers and Writes

4.2 Basic Lace and Frequencesing Technique

- 1.1 Language Notation 7
 Declarations; Statements; Procedures
- 1.2 Logic, Propositions, and Predicates 14
 Formal Logical Systems; Propositions; Predicates
- 1.3 A Programming Logic 23
 Axioms; Inference Rules
- 1.4 Proofs in Programming Logic 31
 Proof Outlines; Equivalence and Simulation
- 1.5 Program Derivation 36

Weakest Preconditions; Weakest Preconditions of Statements; Linear Search Revisited; Sorting

Historical Notes and References 47 Exercises 49

Chapter 2 Concurrency and Synchronization 57

- 2.1 Specifying Concurrent Execution 57
- 2.2 Atomic Actions and Synchronization 59
 Fine-Grained Atomicity; Specifying Synchronization
- 2.3 Semantics of Concurrent Execution 64

2.4 Techniques for Avoiding Interference 67

Disjoint Variables; Weakened Assertions; Global Invariants; Synchronization

2.5 Auxiliary Variables 78

2.6 Safety and Liveness Properties 81

Proving Safety Properties; Scheduling Policies and Fairness

Historical Notes and References 86 Exercises 89

Part II Shared Variables 95

Chapter 3 Fine-Grained Synchronization 97

3.1 The Critical Section Problem 98

A Coarse-Grained Solution; Spin Locks: A Fine-Grained Solution; Implementing Await Statements

3.2 Critical Sections: Tie-Breaker Algorithm 107

A Coarse-Grained Solution; A Fine-Grained Solution; An N-Process Solution

3.3 Critical Sections: Ticket Algorithm 112

Coarse-Grained Solution; Fine-Grained Solutions

3.4 Critical Sections: Bakery Algorithm 115

Coarse-Grained Solution; A Fine-Grained Solution

3.5 Barrier Synchronization 120

Shared Counter; Flags and Coordinators; Symmetric Barriers

3.6 Data Parallel Algorithms 127

Parallel Prefix Computations; Operations on Linked Lists; Grid Computations; Synchronous Multiprocessors

3.7 On-The-Fly Garbage Collection 134

Problem Specification; Solution Outline; A Coarse-Grained Solution; A Fine-Grained Solution

3.8 Implementing Processes 146

A Single-Processor Kernel; A Multiprocessor Kernel

Historical Notes and References 155 Exercises 159

xiii

Chapter 4 Semaphores 171

4.1 Notation and Semantics 172

4.2 Basic Uses and Programming Techniques 175

Critical Sections: Changing Variables; Barriers: Signaling Events; Producers and Consumers: Split Binary Semaphores; Bounded Buffers: Resource Counting

4.3 Selective Mutual Exclusion 189

Dining Philosophers; Readers and Writers

4.4 General Condition Synchronization 197

Readers and Writers Revisited; The Technique of Passing the Baton; Readers and Writers Solution; Alternative Scheduling Policies

4.5 Resource Allocation 204

Problem Definition and General Solution Pattern; Shortest-Job-Next Allocation

4.6 Implementation 210

Historical Notes and References 212 Exercises 214

Chapter 5 Conditional Critical Regions 225

5.1 Notation and Semantics 226

Examples; Inference Rules; Safety and Liveness Properties

5.2 Dining Philosophers Revisited 232

5.3 Readers/Writers Revisited 235

Readers' Preference Solution; Writers' Preference Solution

5.4 Interprocess Communication 238

Bounded Buffer With Exclusive Access; Bounded Buffer With Concurrent Access

5.5 Scheduling and Resource Allocation 242

5.6 Implementations 245

Using Busy Waiting; Using Semaphores with Passing the Baton; Using Semaphores with Rem's Algorithm; Using a Kernel

Historical Notes and References 254 Exercises 255

Chapter 6 Monitors 263

6.1 Programming Notation 264

Synchronization in Monitors; Additional Operations on Condition Variables

6.2 Formal Semantics and Program Proofs 271

Axioms and Proof Obligations; A Procedure Call Inference Rule; Safety and Liveness Properties; An Example: Readers and Writers

6.3 Synchronization Techniques 283

Interval Timer: Covering Conditions and Priority Wait; A Fair Semaphore: Passing the Condition; The Sleeping Barber Problem: Rendezvous

6.4 Disk Scheduling: Program Structures 295

Scheduler as a Separate Monitor; Scheduler as an Intermediary

6.5 Alternative Approaches to Synchronization 305

Alternative Signaling Disciplines; Equivalence of the Signaling Disciplines; Differences Between the Signaling Disciplines; Alternatives to Mutual Exclusion; Path Expressions

6.6 Implementations 319

Using Semaphores; Using a Kernel

Historical Notes and References 325 Exercises 329

Part III Message Passing 339

Chapter 7 Asynchronous Message Passing 343

7.1 Programming Notation 344

7.2 Formal Semantics 346

Axioms and Satisfaction Proofs; Auxiliary Variables and Non-Interference; An Example; Safety and Liveness Properties

7.3 Filters: A Sorting Network 355

7.4 Clients and Servers 359

Active Monitors; A Self-Scheduling Disk Driver; File Servers: Conversational Continuity

7.5 Heartbeat Algorithms 370

Network Topology: Shared-Variable Solution; Network Topology: Distributed Solution

7.6 Probe/Echo Algorithms 376

Broadcast in a Network; Network Topology Revisited

7.7 Broadcast Algorithms 383

Logical Clocks and Event Ordering; Distributed Semaphores

7.8 Token-Passing Algorithms 388

Distributed Mutual Exclusion; Termination Detection in a Ring; Termination Detection in a Graph

7.9 Replicated Servers 396

Replicated Files; Replicated Workers: Adaptive Quadrature

7.10 Implementations 402

Shared-Memory Kernel; Distributed Kernel

Historical Notes and References 410

Exercises 415

Chapter 8 Synchronous Message Passing 423

8.1 Programming Notation 424

Communication Statements; Guarded Communication

8.2 Formal Semantics 429

Axioms, Inference Rules, and Satisfaction Proofs; Auxiliary Variables and Non-Interference; An Example; Safety and Liveness Properties

8.3 Networks of Filters 439

Prime Number Generation: The Sieve of Eratosthenes; Matrix/Vector Multiplication

8.4 Interacting Parallel Processes 443

Parallel Sorting: A Heartbeat Algorithm; Parallel Prefix Computations;

Matrix Multiplication: Broadcast Algorithm; Matrix Multiplication: Heartbeat Algorithm

8.5 Clients and Servers 453

Resource Allocation; File Servers and Conversational Continuity; Centralized Dining Philosophers; Decentralized Dining Philosophers

8.6 Implementations 460

Centralized Clearing House; Decentralized Implementations

Historical Notes and References 472 Exercises 474

Chapter 9 RPC and Rendezvous 483

9.1 Remote Procedure Call 484

Synchronization in Modules; A Time Server; Caches in a Distributed File System; A Sorting Network of Merge Filters; Formal Semantics

9.2 Rendezvous 494

Client/Server Examples; A Sorting Network of Merge Filters; Formal Semantics; An Example Proof; Safety and Liveness Properties

9.3 A Multiple Primitives Notation 509

Invoking and Servicing Operations; Examples; Formal Semantics

9.4 Clients and Servers 515

Readers/Writers Revisited: Encapsulated Access; Replicated Files; Network Topology Using Probe/Echo Algorithms

9.5 Parallel Algorithms 522

Region Labeling: A Heartbeat Algorithm; The Traveling Salesman Problem: Replicated Workers

9.6 Implementations 529

RPC in a Kernel; Rendezvous Using Asynchronous Message Passing; Multiple Primitives in a Kernel

Matrix Vector Wolfsblackto

S.4 Interesting Parallel Processes 445 and

Historical Notes and References 540 Exercises 543 Contents xvii

Part IV Practice 551

Chapter 10 Language Overviews 553

10.1 Turing Plus: Monitors 555

Program Structure; Process Interaction; Example: File Difference Checker

10.2 Occam: Synchronous Message Passing 561

Program Structure; Sequential and Parallel Constructors; Communication and Synchronization; Example: Prime Number Sieve

10.3 Ada: Rendezvous 567

Program Components; Communication and Synchronization; Example: The Dining Philosophers

10.4 SR: Multiple Primitives 575

Program Components; Communication and Synchronization; Example: The Traveling Salesman Problem

Minister allier and lands the manifest his have been been been for an analytical

10.5 Linda: Distributed Data Structures 581

Tuple Space and Process Interaction; Example: Prime Numbers with Replicated Workers

10.6 Comparison and Performance 588

Performance Experiments; Interpretation of Results

Historical Notes and References 593 Exercises 598

Glossary 603

Bibliography 607

Index 627