Contents

Preface vii
Chapter 6
CONTINGENCY TABLES 1
6.1 Multivariate Data Analysis, Data Matrices and Measurement Scales 1
6.1.1 Data Matrices 2
6.1.2 Measurement Scales 7Quantitative Scales, Qualitative Scales, MeasurementScales and Analysis
6.1.3 Data Collection and Statistical Inference 8
Probability Samples and Random Samples, Exploratory and Confirmatory Analysis
6.1.4 An Outline of the Techniques to be Studied 10 Topics in Volume II
6.2 Two-Dimensional Contingency Tables 11
6.2.1 Bivariate Distributions for Categorical Data 12
Joint Density Table, Indepencence, Row and Column Proportions, Row and Column Profiles, Odds Ratios
6.2.2 Statistical Inference in Two-Dimensional Tables 17
The Two-Dimensional Contingency Table, Sampling Models for Contingency Tables, Multinomial, Hy- pergeometric, Poisson, Product Multinomial, Test of Independence, Sampling Model Assumptions, Pois- son Distribution, Product Multinomial Distribution, Standardized Residuals, Correspondence Analysis
6.2.3 Measures of Association 24
Goodman and Kruskal's Lambda, Inference for Lambda
6.2.4 Models for Two-Dimensional Tables 27
Equal Cell Probability Model, Constant Row or Col- umn Densities, The Independence Model as a Com- posite of Three Simple Models, The Saturated Model, Loglinear Characterization for Cell Densities, A Log- linear Model for Independence, Parameters for the Loglinear Model, The Loglinear Model with Interac- tion, Matrix Notation for Loglinear Model
6.2.5 Statistical Inference for Loglinear Models 35
The Loglinear Model Defined in Terms of Cell Fre- quencies, Multiplicative Form of the Loglinear Model, Estimation for the Loglinear Model, Standardized Estimates of Loglinear Parameters, A Loglinear Rep- resentation for Some Simpler Models, Inference Pro- cedures for the Three Simple Models
6.2.6 An Additive Characterization for Cell Densities 42
6.2.7 Two-Dimensional Contingency Tables in a Multivariate Setting 436.2.8 Other Sources of Information46
6.3 Multidimensional Contingency Tables 46
6.3.1 The Three-Dimensional Contingency Table 47Models for Three-Way Tables, Inference for the In-dependence Model, Other Models for Three-Way Ta-bles, Partial Independence, Conditional Independence,No Three-Way Interaction, Saturated Model, Log-linear Models for Three-Way Tables, Definitions ofParameters in Terms of Cell Frequencies, Indepen-dence Model, Partial Independence Model, Condi-tional Independence Model, No Three-Way Interac-tions Model, Saturated Model, Multiplicative Formof the Loglinear Model, Hierarchical Models, Nota-tion for Loglinear Models, Model Selection, Stan-dardized Estimates and Standardized Residuals, Sum-mary of Loglinear Model Fitting Procedure, ProductMultinomial Sampling
6.3.2 Some Examples 60
Three-way Interaction, Goodness of Fit and Model Selection
6.3.3 Four-Dimensional Contingency Tables and Stepwise Fitting Procedures 70
Stepwise Model Selection, Tests of Partial and Marginal Association, Marginal Association
6.3.4 The Effects of Collapsing a Contingency Table and Structural Zeroes 77
Collapsing Contingency Tables, Random Zeroes, Struc- tural Zeroes and Incomplete Tables, Quasi-loglinear Models for Incomplete Tables
6.3.5 Logit Models for Response Variables 82
The Logit Function, Fitting a Logit Model, Relation- ship to Logistic Regression, Polychotomous Response Variables
6.3.6 Other Sources of Information 87
6.4 The Weighted Least Squares Approach 87
6.4.1 The Weighted Least Squares Theory 87
The Product Multinomial Distribution Assumption, Sampling Properties of the Row Proportions, Deter- mining Linear Functions Among the Row Propor- tions, The Linear Model to be Estimated, Determin- ing the Weighted Least Squares Estimator
6.4.2 Statistical Inference for the Weighted Least Squares Procedure 96
6.4.3 Some Alternative Analyses 98
Marginal Analysis, Continuation Differences, Aver- aging or Summing Response Functions, Weighted Sums for Ordinal Responses
6.4.4 Weighted Least Squares Estimation for Logit Models 102
The Logit Model as a Special Case of a Weighted Least Squares Model, Continuation Ratios
6.4.5 Two or More Response Variables 104
Defining Response Functions, Repeated Measurement Designs, Adding Interaction Effects
6.4.6 Other Sources of Information 115
Cited Literature and References 116
Exercises for Chapter 6 117
Questions for Chapter 6 121
Chapter 7MULTIVARIATE DISTRIBUTIONS, INFERENCE,REGRESSION and CANONICAL CORRELATION131
7.1 Multivariate Random Variables and Samples 131
7.1.1 Multivariate Distributions and Multivariate Random Variables 132
Joint Distribution, Partitioning the Random Vari- able, Conditional Distributions and Independence, Mean Vector and Covariance Matrix, Correlation Ma- trix
7.1.2 Multivariate Samples 136
Sample Mean Vector and Covariance Matrix, Sam- ple Correlation Matrix, Sums of Squares and Cross Product Matrices, Multivariate Central Limit Theo- rem
7.1.3 Geometric Interpretations for Data Matrices 140 p-Dimensional Space, n-Dimensional Space, Maha- lanobis Distance and Generalized Variance, p-Dimen- sional Ellipsoid, Generalized Variance, Trace Mea- sure of Overall Variance, Generalized Variance for Correlation Matrices, Eigenvalues and Eigenvectors for Sums of Squares and Cross Product Matrices
7.1.4 Other Sources of Information 144
7.2 The Multivariate Normal Distribution 144
7.2.1 The Multivariate Normal 145
Multivariate Normal Density, Constant Probability Density Contour, Linear Transformations, Distribu- tion of Probability Density Contour
7.2.2 Partitioning the Normal 146
Marginal Distributions, Conditional Distributions, Mul- tivariate Regression Function, Partial Correlation
7.3 Testing for Normality, Outliers and Robust Estimation 148
7.3.1 Testing for Normality 148
Mahalanobis Distances from the Sample Mean, Mul- tivariate Skewness and Kurtosis, Transforming to Nor- mality
7.3.2 Multivariate Outliers 150
Multivariate Outliers and Mahalanobis Distance, Test- ing for Multivariate Outliers, Multiple Outliers
7.3.3 Robust Estimation 156
Obtaining Robust Estimators of Covariance and Cor- relation Matrices, Multivariate Trimming
7.3.4 Other Sources of Information 157
7.4 Inference for the Multivariate Normal 157
7.4.1 Inference Procedures for the Mean Vector 157
Sample Likelihood Function, Hotelling's T^{2}, Infer- ence, Simultaneous Confidence Regions, Inferences for Linear Functions
7.4.2 Repeated Measures Comparisons 160
Repeated Measurements on a Single Variable, Profile Characterization, Repeated Measures in a Random- ized Block Design, Necessary and Sufficient Condi- tions for Validity of Univariate F Test
7.4.3 Mahalanobis Distance of the Mean Vector from the Origin 163 Mahalanobis Distance of Mean Vector from the Ori- gin, Application to Financial Portfolios
7.4.4 Inference for the Covariance and the Correlation Matrices 165
Wishart Distribution, Sphericity Test and Test for Independence, A Test for Zero Correlation, Test Statis- tics for Repeated Measures Designs, Test for Equal Variance-Equal Covariance Structure, Test for the Hyunh-Feldt Pattern, Equal Correlation Structure, Independent Blocks, Partial and Multiple Correla- tion
7.4.5 Other Sources of Information 169
7.5 Multivariate Regression and Canonical Correlation 169
7.5.1 Multivariate Regression 170
The Multivariate Regression Function, Estimation of the Multivariate Regression Model, Relationship to Ordinary Least Squares, Residuals, Influence, Out- liers and Cross Validation, Estimation of the Error Covariance Matrix, Relationship to Multiple Linear Regression, Testing the Hypothesis that Some Coef- ficients are Zero, Other Tests, Inferences for Linear Functions, Relationship to Generalized Least Squares, Zellner's Seemingly Unrelated Regression Model
7.5.2 Canonical Correlation 181Derivation of Canonical Relationships, An EigenvalueProblem, The Canonical Variables, Sample Canoni-cal Correlation Analysis, Canonical Weights and Canon-ical Variables, Inference for Canonical Correlation,An Alternative Test Statistic, Structure Correlationsor Canonical Loadings, Redundancy Analysis andProportion of Variance Explained, Redundancy Mea-sure for a Given Canonical Variate, Total Redun-dancy, Relation to Multiple Regression, Residuals,Influence, Outliers and Cross Validation
7.5.3 Other Sources of Information 190
Cited Literature and References 191
Exercises for Chapter 7 193
Questions for Chapter 7 195
Chapter 8
MANOVA, DISCRIMINANT ANALYSIS and QUALITATIVE RESPONSE MODELS 209
8.1 Multivariate Analysis of Variance 209
8.1.1 One-Way Multivariate Analysis of Variance 209
Comparison to Univariate Analysis of Variance, No-tation for Several Multivariate Populations, MeanVector for Group k and Common Covariance Matrix,Grand Mean Vector, Notation for Samples, Sam-ple Mean Vector and Sample Covariance Matrix forGroup k, Sample Grand Mean Vector, The Multi-variate Analysis of Variance Model, Within GroupSum of Squares Matrix, Among Group Sum of SquaresMatrix, Total Sum of Squares Matrix, Statistical In-ference for MANOVA, Wilk's Lambda Likelihood,Ratio F-Statistic, An Alternative Test Statistic, Cor-relation Ratio, The Special Case of Two Groups,A Bonferroni Approximation, Multiple ComparisonProcedures Based on Two Group Comparisons, Test-ing for the Equality of Covariance Matrices
8.1.2 Indicator Variables, Multivariate Regression and Analysis of Covariance 222
Some Relationships to the Multivariate Regression Test for $H_{0}: \mathbf{A B M}=0$, Cell Parameter Coding, The Non-Full Rank Design Matrix, Multivariate Analysis of Covariance
8.1.3 Profile Analysis with Repeated Measurements 229
Comparing Profiles, Parallel Profiles, Equal Profiles Given Parallel Profiles, Horizontal Profiles Given Par- allel Profiles, Horizontal Profiles
8.1.4 Balanced Two-Way MANOVA 234
The Model, Sums of Squares Matrices, Inference, The Multivariate Paired Comparison Test
8.1.5 An Unbalanced MANOVA with Covariate 239
8.1.6 Other Sources of Information 241
8.2 Discriminant Analysis 242
8.2.1 Fisher's Discriminant Criterion and Canonical Discriminant Analysis 244Fisher's Discriminant Criterion, An Eigenvalue Prob-lem, Canonical Discriminant Functions, Inferencesfor Canonical Discriminant Functions, Bartlett's Test,

An Alternative Test Statistic- F, Interpretation of the Discriminant Analysis Solution, Interpretation Using Correlations, Graphical Approach to Group Characterization, Comparison of Correlation Coefficients and Discriminant Function Coefficients, Effect of Correlation Structure on Discriminant Analysis, Discriminant Analysis and Canonical Correlation, Discriminant Analysis and Dimension Reduction

$$
\begin{aligned}
& \text { 8.2.2 Discriminant Functions and Classification } \\
& \text { Discrimination Between Two Groups with Param- } \\
& \text { eters Known, Classification of an Unknown, Fisher } \\
& \text { Criterion and Mahalanobis Distance, Maximum Like- } \\
& \text { lihood Criterion, Minimum Total Probability of Mis- } \\
& \text { classification Criterion, Bayes Theorem Criterion, Min- } \\
& \text { imax Criterion, Minimum Cost Criterion, Summary, } \\
& \text { Quadratic Discriminant Function and Unequal Co- } \\
& \text { variance Matrices, Classification in Practice, Eval- } \\
& \text { uation of a Discriminant Function as a Classifica- } \\
& \text { tion Mechanism, Split Sample, Jackknife Procedure, } \\
& \text { Multiple Group Classification, Bias When Parame- } \\
& \text { ters are Unknown }
\end{aligned}
$$

8.2.3 Tests of Sufficiency and Variable Selection 274
Two Groups, More Than Two Groups
8.2.4 Discrimination Without Normality 277
Discrimination Using Ranks, Nearest Neighbor Method
8.2.5 Other Sources of Information 278
8.3 Qualitative Response Regression Models and Logistic Regression 278
8.3.1 The Dichotomous Response Model 279
The Point Binomial, Probability as a Function of Other Variables, Alternative Response Functions, Lo- gistic Regression with c Explanatory Variables, Max- imum Likelihood Estimation for Dichotomous Logis- tic Regression, Newton-Raphson Procedure, Infer- ence for the Dichotomous Logistic Regression Model, Comparing Nested Models and Inference for Coef- ficients, Goodness of Fit, Hosmer-Lemeshow Good- ness of Fit Test, Covariance Matrix for Estimated Coefficients, The Role of the Intercept and Categor- ical Variables, Testing for Zero Intercept, Dummy Variables as Explanatory Variables - A Caution, The Fitted Model and Classification, The Jackknife Ap- proach, Stepwise Logistic Regression, Influence Di-
agnostics, The Chi Statistic, The Deviance Statistic,Leverage, Influence, The DFBETA Measure
8.3.2 The Probit Model 299
8.3.3 Logistic Regression and Probit Analysis: A Second Example 303
8.3.4 Multiple Observations and Design Variables 304
The Model and Maximum Likelihood Estimation, The Chi and Deviance Statistics, Weighted Least Squares or Minimum Logit Chi-Square Estimation
8.3.5 Other Sources of Information 306
8.3.6 The Multinomial Logit Model 306
Parameterization of the Model, Inference for the Multi- nomial Logit, Using Multinomial Logit Models, Es- timation Using Single Equation Methods, Continua- tion Ratios, Other Nested Partitions,
8.3.7 Other Sources of Information 321
8.3.8 The Conditional Logit Model and Consumer Choice 321
8.3.9 Multivariate Qualitative Response Models 322 Loglinear Models for Dependent Variables, Relation Between Loglinear Parameters and Logits, A Condi- tional Probability Approach
Cited Literature and References 327
Exercises for Chapter 8 329
Questions for Chapter 8 334
Chapter 9
PRINCIPAL COMPONENTS, FACTORS and CORRESPONDENCE ANALYSIS 345
9.1 Principal Components 346
9.1.1 A Classic Example 346
9.1.2 An Ad Hoc Approach 346
9.1.3 The Principal Components Approach 350Characterizing the First Principal Component, TheEigenvalue Problem, Generalization to r PrincipalComponents, Spectral Decomposition, The Full RankCase, Alternative Characterizations and Geometry,Principal Components and Multivariate Random Vari-ables, Principal Component Scores
9.1.4 The Various Forms of $\mathbf{X}^{\prime} \mathbf{X}$ and Principal Components 367 Interpretations Using Correlations, Standardized Prin- cipal Components, Communality or Variance Explained,
How Many Principal Components, Average Crite-rion, Geometric Mean Criterion, A Test for Equalityof Eigenvalues in Covariance Matrices, A Cross Val-idation Approach, Should all the Variables be Re-tained
9.1.5 Principal Components, Multiple Regression and Supplementary Points 378
Multiple Regression, Supplementary Dimensions and Points
9.1.6 Outliers and Robust Principal Components Analysis 381
Identification of Outliers, Influence, Robust Princi- pal Components Analysis, Rank Correlation and Ro- bust Principal Components Analysis
9.1.7 Other Sources of Information 388
9.2 The Exploratory Factor Analysis Model 388
9.2.1 The Factor Analysis Model and Estimation 389
The Model, Factor Analysis Using the Correlation Matrix, Indeterminacy, Estimation of the Factor Model Using Principal Components, Estimation of the Com- mon Factor Model, Determination of the Number of Factors, A Useful Preliminary Test, Scree Test, The Broken Stick Model, Equal Correlation Struc- ture and the Number of Factors, Principal Factor Approach
9.2.2 Factor Rotation 398
The Theory of Rigid Rotation, Varimax, Other Rota- tion Methods, Quartimax Criterion, Orthomax, Oblique Rotation, Procrustes Rotation, The Geometry of Fac- tor Analysis
9.2.3 Factor Scores 410
9.2.4 The Maximum Likelihood Estimation Method 413
The Maximum Likelihood Approach, Goodness of Fit, Cross Validation, Akaike and Schwartz Criteria
9.2.5 Results From a Simulation Study 417
9.2.6 A Second Example 419
9.2.7 Other Sources of Information 426
9.3 Singular Value Decomposition and Matrix Approximation 426
9.3.1 Singular Value Decomposition and Principal Components 427
9.3.2 Biplots and Matrix Approximation 428
Constructing Biplots, The Principal Components Bi- plot, Covariance Biplot, Symmetric Biplot
9.3.3 Other Sources of Information 431
9.4 Correspondence Analysis 431
9.4.1 Correspondence Analysis for Two-Dimensional Tables 433
Some Notation, Correspondence Matrix and Row andColumn Masses, Row and Column Profiles, Depar-ture from Independence, Averaging the Profiles, Re-lationship to Pearson Chi-square Statistic, Total In-ertia, Generalized Singular Value Decomposition, Co-ordinates for Row and Column Profiles, Partial Con-tributions to Total Inertia, Squared Cosines, Princi-ple of Distributional Equivalence, Generalized LeastSquares Approximation, Relationship to GeneralizedSingular Value Decomposition of O, Row and Col-umn Profile Deviations and Eigenvectors, Correspon-dence Analysis for Multidimensional Tables
9.4.2 Other Sources of Information 453
9.4.3 Correspondence Analysis and Frequency Response Tables 453
A Dual Scaling Approach, Review of One-way ANOVA Notation, Scaling the Response Categories, Some Al- ternative Approaches to Correspondence Analysis, Bivariate Correlation, Simultaneous Linear Regres- sion, Canonical Correlation
9.4.4 Other Sources of Information 461
9.4.5 Correspondence Analysis in Multidimensional Tables 462 Multiple Correspondence Analysis and Burt Matri- ces
9.4.6 Other Sources of Information 465
Cited Literature and References 467
Exercises for Chapter 9
Questions for Chapter 9 469
474
Chapter 10
CLUSTER ANALYSIS and MULTIDIMENSIONAL SCALING 10.1 Proximity Matrices Derived from 483
10.1.1 The Measurement of Proximity Between Objects 484
Similarity, Dissimilarity, Euclidean Distance, Usingtrix Form, Standardized Euclidean Distance, Maha-lanobis Distance and Multivariate Distance, EuclideanDistance and the Centroid, Manhattan or City Block
Metric, Minkowski Metrics, Distance Measures Averaged Over Variables, Correlation Type Measures of Similarity, Similarity Matrices, Double Mean-Centered, Profile Shape, Scatter and Level, Some Relationships Between Similarity and Euclidean Distance, Proximity Measures for Categorical Data, Matching Coefficients for Binary Variables, Mixtures of Categorical and Interval Scaled Variables
10.1.2 The Measurement of Proximity Between Groups 508
Single Linkage or Nearest Neighbor, Complete Link- age of Furthest Neighbor, Average Linkage, An Al- gorithm for Updating the Proximity Measures, Dis- tance Between Centroids, Incremental Sums of Squares, Relationship to Analysis of Variance, Algorithms for Determining Proximity, Measures Based on Centroids and Sums of Squares, Ultrametric Inequality, Sums of Squares Derived from MANOVA Matrices, A Mul- tivariate Measure of Proximity
10.2 Cluster Analysis 518
10.2.1 Hierarchical Methods 519
Agglomerative versus Divisive Processes, Compari- son of Group Proximity Measures, Some Multivariate Approaches to Hierarchical Clustering, An Example with Outliers
10.2.2 Assessing the Hierarchical Solution and Cluster Choice 534
Dendograms and Derived Proximities, Cophenetic Cor- relation and Cluster Validity, Stress, Alternative De- rived Proximities Based on Centroids, Choosing the Number of Clusters, A Binary Data Example, Test Statistics for Number of Clusters, Some ANOVA- Type Statistics, Pseudo- F, Pseudo- t^{2} and Beales' F-Ratio, R^{2}-Type Measures, Correlation-Type Mea- sures of Cluster Quality, Point-Biserial Correlation, Gamma and $G(+)$,
10.2.3 Combining Hierarchical Cluster Analysis With Other Multivariate Methods 553
Interpretation of the Cluster Solution, ANOVA, MANOVA and Discriminant Analysis, Principal Components and Factor Analysis, Principal Components Analysis Prior to Cluster Analysis
10.2.4 Other Clustering Methods 559
Partitioning Methods, The k-Means Algorithm, Se- lecting the Initial Partition, Classification Typologies and Q-Sort Methods, Density Methods, Clumping Techniques or Fuzzy Clustering
10.2.5 Cluster Validity and Cluster Analysis Methodology 563
Cluster Validity, Monte Carlo Studies, The Under- lying Cluster Population, Evaluation of Clustering Algorithms, Evaluation of Internal Criterion Mea- sures, Cluster Choice, Variable Standardization Pro- cedures, On the Measurement of Cluster Recovery and External Measurement Criteria
10.2.6 Other Sources of Information 568
10.3 Multidimensional Scaling 568
10.3.1 Metric Multidimensional Scaling 570
Constructing a Positive Semidefinite Matrix Based on D, The Fundamental Theorem of MDS, The MDS Solution, An Approximate Solution, Metric Multi- dimensional Scaling Beginning with \mathbf{D}, Relation to Cluster Analysis, Improving the Solution, Using Sim- ilarities, Metric MDS and Principal Coordinates Anal- ysis, Relation to Cluster Analysis, An Alternative Derivation for A, The Additive Constant Problem, Application of Metric Scaling
10.3.2 Nonmetric Multidimensional Scaling 584
Ordinal Scaling, Shepard-Kruskal Algorithm, The Nonmetric Phase and Monotone Regression, The Pool Adjacent Violators Algorithm, Ties and Types of Monotonicity, Ties in the Original Dissimilarities, The Metric Phase, The Evaluation Phase, Selection and Interpretation Phase, Monte Carlo Studies of the Stress Function, The ALSCAL Algorithm
10.3.3 Other Scaling Models 601
Individual Difference Models, Preference Models and Multidimensional Unfolding
10.3.4 Other Sources of Information 602
Cited Literature and References 603
Exercises for Chapter 10 606
Questions for Chapter 10 612
APPENDIX 617

1. Matrix Algebra 617
1.1 Matrices 617
Matrix, Transpose of a Matrix, Row Vector and Col- umn Vector, Square Matrix, Symmetric Matrix, Di- agonal Elements, Trace of a Matrix, Null or Zero Matrix, Identity Matrix, Diagonal Matrix, Subma- trix
1.2 Matrix Operations 620
Equality of Matrices, Addition of Matrices, Additive Inverse, Scalar Multiplication of a Matrix, Product of Two Matrices, Multiplicative Inverse, Idempotent Matrix, Kronecker Product
1.3 Determinants and Rank 625
Determinant, Nonsingular, Relation Between Inverse and Determinant, Rank of a Matrix
1.4 Quadratic Forms and Positive Definite Matrices 629
Quadratic Form, Congruent Matrix, Positive Defi- nite, Positive Semidefinite, Negative Definite, Non- negative Definite
1.5 Partitioned Matrices 630
Product of Partitioned Matrices, Inverse of a Parti- tioned Matrix, Determinant of a Partitioned Matrix
1.6 Expectations of Random Matrices 632
1.7 Derivatives of Matrix Expressions 633
2. Linear Algebra 634
2.1 Geometric Representation for Vectors 634
n Dimensional Space, Directed Line Segment, Coor- dinates, Addition of Vectors, Scalar Multiplication, Length of a Vector, Angle Between Vectors, Orthog- onal Vectors, Projection
2.2 Linear Dependence And Linear Transformations 636
Linearly Dependent Vectors, Linearly Independent Vectors, Basis for an n-Dimensional Space, Genera- tion of a Vector Space and Rank of a Matrix, Linear Transformation, Orthogonal Transformation, Rota- tion, Orthogonal Matrix
2.3 Systems of Equations 639
Solution Vector for a System of Equations, Homoge- neous Equations - Trivial and Nontrivial Solutions
