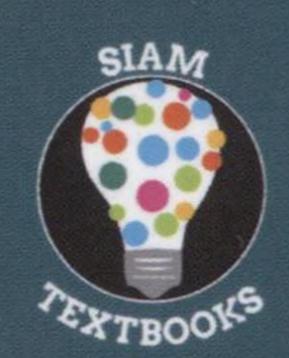
This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research.

PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines.

Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.


Christian Kuehn is Lichtenberg Professor for Multiscale and Stochastic Dynamics at Technical University of Munich and has worked at the Max Planck Institute for Physics of Complex Systems and Vienna University of Technology as a postdoctoral fellow. He has been an MFO Leibniz Fellow and an APART Fellow of the Austrian Academy of Sciences, and he is a recipient of the Richard von Mises Prize for his contributions to nonlinear dynamics. His research interests lie at the interface of differential equations, dynamical systems, and mathematical modelling, and his key goal is analyzing multiscale problems and the effect of noise/uncertainty in various classes of ordinary, partial, and stochastic differential equations as well as in adaptive networks.

For more information about SIAM books, journals, conferences, memberships, or activities, contact:

siam.

Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA +1-215-382-9800 • Fax +1-215-386-7999 siam@siam.org • www.siam.org

Pre	face	vii
Cou	ırse Design	xi
1	A Whirlwind Introduction	1
2	Some ODE Theory and Geometric Dynamics	4
3	Some PDE Theory and Functional Analysis	10
4	Implicit Functions and Lyapunov-Schmidt	14
5	Crandall-Rabinowitz and Local Bifurcations	19
6	Stability and Spectral Theory	26
7	Existence of Travelling Waves	31
8	Pushed and Pulled Fronts	38
9	Sturm-Liouville and Stability of Travelling Waves	44
10	Exponential Dichotomies and the Evans Function	49
11	Characteristics and Shocks	56
12	Onset of Patterns and Multiple Scales	62
13	Validity of Amplitude Equations	68
14	Semigroups and Sectorial Operators	73
15	Dissipation and Absorbing Sets	79
16	Nonlinear Saddles and Invariant Manifolds	84
17	Spectral Gap and Inertial Manifolds	90
18	Attractors and the Variational Equation	95
19	Lyapunov Exponents and Fractal Dimension	100

vi

20	Metastability and Manifolds	
21	Exponentially Small Terms	
22	Coarsening Bounds and Scaling	
23	Gradient Flows and Lyapunov Functions	
24	Entropies and Global Decay	
25	Convexity and Minimizers	
26	Mountain Passes and Periodic Waves	
27	Hamiltonian Dynamics and Normal Forms	
28	Empirical Measures and the Mean Field	
29	Two Effects: Hypocoercivity and Turing	
30	Blow-up in Cross-Diffusion Systems	
31	Self-Similarity and Free Boundaries	
32	Spirals and Symmetry	
33	Averaging and Ergodicity	
34	Two-Scale Convergence	
35	Asymptotics and Layers	
36	Fast-Slow Systems: Periodicity and Chaos	
A	Finite Differences and Simulation	
В	Finite Elements and Continuation	
Bibl	liography	
Inde	ex	
		- 4