

Contents

Preface xx

For the Student xxxi

Highlights of *Organic Chemistry, Fourth Edition* xxxii

About the Author xxxvi

Part 1 An Introduction to the Study of Organic Chemistry 1

1 Electronic Structure and Bonding • Acids and Bases 2

1.1 The Structure of an Atom 3
1.2 The Distribution of Electrons in an Atom 4
1.3 Ionic, Covalent, and Polar Bonds 7
1.4 Representation of Structure 13
1.5 Atomic Orbitals 18
1.6 An Introduction to Molecular Orbital Theory 20
1.7 Bonding in Methane and Ethane: Single Bonds 25
1.8 Bonding in Ethene: A Double Bond 29
1.9 Bonding in Ethyne: A Triple Bond 31
1.10 Bonding in the Methyl Cation, the Methyl Radical, and the Methyl Anion 32
1.11 Bonding in Water 33
1.12 Bonding in Ammonia and in the Ammonium Ion 34
1.13 Bonding in the Hydrogen Halides 35
1.14 Summary: Orbital Hybridization, Bond Lengths, Bond Strengths, and Bond Angles 36
1.15 Dipole Moments of Molecules 38
1.16 An Introduction to Acids and Bases 39
1.17 Organic Acids and Bases; pK_a and pH 40
1.18 The Effect of Structure on pK_a 45
1.19 An Introduction to Delocalized Electrons and Resonance 49
1.20 The Effect of pH on the Structure of an Organic Compound 51
1.21 Lewis Acids and Bases 54
Summary 55 ■ Key Terms 56 ■ Problems 57

Problem-Solving Strategy 48

Box Features: Albert Einstein 5 ■ Max Karl Ernst Ludwig Planck 5 ■
Diamond, Graphite, and Buckminsterfullerene: Substances Containing Only Carbon Atoms 31 ■ Water—A Unique Compound 34 ■ Derivation of the Henderson–Hasselbalch Equation 52 ■ Blood: A Buffered Solution 53

2 An Introduction to Organic Compounds: Nomenclature, Physical Properties, and Representation of Structure 60

2.1 Nomenclature of Alkyl Substituents 63
2.2 Nomenclature of Alkanes 67
2.3 Nomenclature of Cycloalkanes 71
2.4 Nomenclature of Alkyl Halides 73
2.5 Nomenclature of Ethers 74
2.6 Nomenclature of Alcohols 75
2.7 Nomenclature of Amines 77
2.8 Structures of Alkyl Halides, Alcohols, Ethers, and Amines 80
2.9 Physical Properties of Alkanes, Alkyl Halides, Alcohols, Ethers, and Amines 81
2.10 Conformations of Alkanes: Rotation About Carbon–Carbon Bonds 88
2.11 Cycloalkanes: Ring Strain 92
2.12 Conformations of Cyclohexane 94
2.13 Conformations of Monosubstituted Cyclohexanes 98
2.14 Conformations of Disubstituted Cyclohexanes 100
2.15 Conformations of Fused Rings 103
Summary 104 ■ Key Terms 105 ■ Problems 105
Problem-Solving Strategy 84, 102
Box Features: Highly Strained Hydrocarbons 93 ■ Von Baeyer and Barbituric Acid 94

Part 2 Hydrocarbons, Stereochemistry, and Resonance 109

3 Alkenes: Structure, Nomenclature, and an Introduction to Reactivity • Thermodynamics and Kinetics 111

3.1 Molecular Formula and the Degree of Unsaturation 112
3.2 Nomenclature of Alkenes 113
3.3 The Structure of Alkenes 116
3.4 Cis–Trans Isomerism 116
3.5 The *E,Z* System of Nomenclature 119
3.6 How Alkenes React • Curved Arrows 121
3.7 Thermodynamics and Kinetics 125
Summary 137 ■ Key Terms 138 ■ Problems 138
Box Features: Cis–Trans Interconversion in Vision 118 ■ A Few Words About Curved Arrows 124 ■ The Difference Between ΔG^\ddagger and E_a 133 ■ Calculating Kinetic Parameters 140

4 Reactions of Alkenes 141

4.1 Addition of Hydrogen Halides 142
4.2 Carbocation Stability 143
4.3 The Structure of the Transition State 145
4.4 Regioselectivity of Electrophilic Addition Reactions 147
4.5 Addition of Water and Addition of Alcohols 151
4.6 Rearrangement of Carbocations 154
4.7 Addition of Halogens 157
4.8 Oxymercuration–Reduction and Alkoxymercuration–Reduction 161
4.9 Addition of Borane: Hydroboration–Oxidation 163

4.10 Addition of Radicals • The Relative Stabilities of Radicals 167
4.11 Addition of Hydrogen • The Relative Stabilities of Alkenes 171
4.12 Reactions and Synthesis 174
 Summary 176 ■ Summary of Reactions 176 ■
 Key Terms 177 ■ Problems 178
Problem-Solving Strategy 149, 167
Box Features: Borane and Diborane 164

5 Stereochemistry: The Arrangement of Atoms in Space; The Stereochemistry of Addition Reactions 182

5.1 Cis–Trans Isomers 183
5.2 Chirality 184
5.3 Asymmetric Carbons, Chirality Centers, and Stereocenters 184
5.4 Isomers with One Asymmetric Carbon 185
5.5 Drawing Enantiomers 186
5.6 Naming Enantiomers: The *R,S* System of Nomenclature 188
5.7 Optical Activity 192
5.8 Optical Purity and Enantiomeric Excess 195
5.9 Isomers with More than One Asymmetric Carbon 197
5.10 Meso Compounds 200
5.11 The *R,S* System of Nomenclature for Isomers with More than One Asymmetric Carbon 204
5.12 Reactions of Compounds that Contain an Asymmetric Carbon 209
5.13 The Absolute Configuration of (+)-Glyceraldehyde 210
5.14 Separating Enantiomers 211
5.15 Discrimination of Enantiomers by Biological Molecules 213
5.16 Enantiotopic Hydrogens, Diastereotopic Hydrogens, and Prochiral Carbons 215
5.17 Nitrogen and Phosphorus Chirality Centers 217
5.18 Stereochemistry of Reactions: Regioselective, Stereoselective, and Stereospecific Reactions 218
5.19 Stereochemistry of Electrophilic Addition Reaction of Alkenes 219
5.20 Stereochemistry of Enzyme-Catalyzed Reactions 230
 Summary 231 ■ Key Terms 232 ■ Problems 232
Problem-Solving Strategy 202, 207, 227
Box Features: The Enantiomers of Thalidomide 215 ■ Chiral Drugs 215

6 Reactions of Alkynes • Introduction to Multistep Synthesis 238

6.1 Nomenclature of Alkynes 239
6.2 Physical Properties of Unsaturated Hydrocarbons 240
6.3 The Structure of Alkynes 241
6.4 How Alkynes React 241
6.5 Addition of Hydrogen Halides and Addition of Halogens 243
6.6 Addition of Water 246
6.7 Addition of Borane: Hydroboration–Oxidation 248
6.8 Addition of Hydrogen 249
6.9 Acidity of a Hydrogen Bonded to an *sp* Hybridized Carbon 250
6.10 Synthesis Using Acetylide Ions 253
6.11 Designing a Synthesis I: An Introduction to Multistep Synthesis 254
6.12 Commercial Use of Ethyne 258
 Summary 258 ■ Summary of Reactions 259 ■
 Key Terms 260 ■ Problems 260

7 Electron Delocalization and Resonance •

More About Molecular Orbital Theory 263

7.1 Delocalized Electrons: The Structure of Benzene 264

7.2 The Bonding in Benzene 267

7.3 Resonance Contributors and the Resonance Hybrid 267

7.4 Drawing Resonance Contributors 269

7.5 Predicted Stabilities of Resonance Contributors 273

7.6 Resonance Energy 275

7.7 Stability of Allylic and Benzylic Cations 278

7.8 Stability of Allylic and Benzylic Radicals 280

7.9 Some Chemical Consequences of Electron Delocalization 280

7.10 The Effect of Electron Delocalization on pK_a 282

7.11 A Molecular Orbital Description of Stability 286

Summary 294 ■ Key Terms 294 ■ Problems 294

Problem-Solving Strategy 277

Box Features: Kekulé's Dream 266

8 Reactions of Dienes • Ultraviolet and

Visible Spectroscopy 298

8.1 Nomenclature of Alkenes with More than One Functional Group 299

8.2 Configurational Isomers of Dienes 301

8.3 Relative Stabilities of Dienes 301

8.4 How Dienes React 304

8.5 Electrophilic Addition Reactions of Isolated Dienes 304

8.6 Electrophilic Addition Reactions of Conjugated Dienes 305

8.7 Thermodynamic Versus Kinetic Control of Reactions 308

8.8 The Diels–Alder Reaction: A 1,4-Addition Reaction 313

8.9 Ultraviolet and Visible Spectroscopy 321

8.10 The Beer–Lambert Law 323

8.11 Effect of Conjugation on λ_{max} 324

8.12 The Visible Spectrum and Color 326

8.13 Uses of UV/VIS Spectroscopy 328

Summary 329 ■ Summary of Reactions 330 ■

Key Terms 331 ■ Problems 331

Problem-Solving Strategy 320

Box Features: How a Banana Slug Knows What to Eat 300 ■ Ultraviolet Light and Sunscreens 323 ■ Anthocyanins: A Colorful Class of Compounds 327

9 Reactions of Alkanes • Radicals 336

9.1 The Low Reactivity of Alkanes 338

9.2 Chlorination and Bromination of Alkanes 338

9.3 Factors that Determine Product Distribution 340

9.4 The Reactivity–Selectivity Principle 343

9.5 Radical Substitution of Benzylic and Allylic Hydrogens 346

9.6 Stereochemistry of Radical Substitution Reactions 348

9.7 Reactions of Cyclic Compounds 350

9.8 Radical Reactions in Biological Systems 351

9.9 Radicals and Stratospheric Ozone 353

Summary 355 ■ Summary of Reactions 355 ■

Key Terms 356 ■ Problems 356

Problem-Solving Strategy 346

Box Features: Octane Number 337 ■ Fossil Fuels: A Problematic Energy

Source 337 ■ Cyclopropane 350 ■ Decaffeinated Coffee and the Cancer

Scare 351 ■ Food Preservatives 353 ■ The Concorde and Ozone

Depletion 354

Part 3 Substitution and Elimination Reactions 359

10 Substitution Reactions of Alkyl Halides 360

- 0.1 How Alkyl Halides React 361
- 0.2 The Mechanism of an S_N2 Reaction 362
- 0.3 Factors Affecting S_N2 Reactions 367
- 0.4 The Reversibility of an S_N2 Reaction 372
- 0.5 The Mechanism of an S_N1 Reaction 375
- 0.6 Factors Affecting S_N1 Reactions 378
- 0.7 More About the Stereochemistry of S_N2 and S_N1 Reactions 380
- 0.8 Benzylic Halides, Allylic Halides, Vinylic Halides, and Aryl Halides 383
- 0.9 Competition Between S_N2 and S_N1 Reactions 385
- 0.10 The Role of the Solvent in S_N2 and S_N1 Reactions 389
- 0.11 Biological Methylating Reagents 394

Summary 396 ■ Summary of Reactions 396 ■
Key Terms 397 ■ Problems 397

Problem-Solving Strategy 384, 387

Box Features: Survival Compounds 361 ■ Why Carbon Instead of Silicon? 375 ■ Solvation Effects 390 ■ Environmental Adaptation 393
■ *S*-Adenosylmethionine: A Natural Antidepressant 396

11 Elimination Reactions of Alkyl Halides • Competition Between Substitution and Elimination 400

- 11.1 The E2 Reaction 401
- 11.2 The Regioselectivity of the E2 Reaction 402
- 11.3 The E1 Reaction 408
- 11.4 Competition Between E2 and E1 Reactions 412
- 11.5 Stereochemistry of E2 and E1 Reactions 413
- 11.6 Elimination from Cyclic Compounds 417
- 11.7 A Kinetic Isotope Effect 421
- 11.8 Competition Between Substitution and Elimination 422
- 11.9 Substitution and Elimination Reactions in Synthesis 425
- 11.10 Consecutive E2 Elimination Reactions 427
- 11.11 Intermolecular Versus Intramolecular Reactions 428
- 11.12 Designing a Synthesis II: Approaching the Problem 429

Summary 432 ■ Summary of Reactions 433 ■
Key Terms 433 ■ Problems 434

Problem-Solving Strategy 412

Box Features: Investigating Naturally Occurring Organohalides 401

12 Reactions of Alcohols, Ethers, Epoxides, and Sulfur-Containing Compounds • Organometallic Compounds 437

- 12.1 Substitution Reactions of Alcohols 437
- 12.2 Amines Do Not Undergo Substitution Reactions 440
- 12.3 Other Methods for Converting Alcohols into Alkyl Halides 442
- 12.4 Converting Alcohols into Sulfonate Esters 443
- 12.5 Elimination Reactions of Alcohols: Dehydration 445
- 12.6 Substitution Reactions of Ethers 451
- 12.7 Reactions of Epoxides 454

12.8	Arene Oxides	457
12.9	Crown Ethers	462
12.10	Thiols, Sulfides, and Sulfonium Salts	464
12.11	Organometallic Compounds	466
12.12	Coupling Reactions	470
	Summary	473
	Key Terms	476
	Summary of Reactions	474
	Problems	476
Problem-Solving Strategy 450		
Box Features: The Lucas Test 439 ■ Grain Alcohol and Wood Alcohol 441		
■ Biological Dehydrations 449 ■ Anesthetics 453 ■ Chimney Sweeps and		
Cancer 461 ■ Benzo[a]Pyrene and Cancer 461 ■ An Ionophorous Antibiotic		
463 ■ Mustard Gas 465 ■ Antidote to a War Gas 465		

Part 4 Identification of Organic Compounds 481

13 Mass Spectrometry and Infrared Spectroscopy 482

13.1	Mass Spectrometry	484
13.2	The Mass Spectrum • Fragmentation	485
13.3	Isotopes in Mass Spectrometry	488
13.4	Determination of Molecular Formulas: High-Resolution Mass Spectrometry	489
13.5	Fragmentation at Functional Groups	490
13.6	Spectroscopy and the Electromagnetic Spectrum	497
13.7	Infrared Spectroscopy	499
13.8	Characteristic Infrared Absorption Bands	501
13.9	The Intensity of Absorption Bands	502
13.10	The Position of Absorption Bands	503
13.11	C—H Absorption Bands	508
13.12	The Shape of Absorption Bands	511
13.13	Absence of Absorption Bands	511
13.14	Infrared Inactive Vibrations	512
13.15	Identifying Infrared Spectra	514
	Summary	516
	Key Terms	517
	Problems	517
Box Features: The Originator of Hooke's Law 503		

14 NMR Spectroscopy 526

14.1	Introduction to NMR Spectroscopy	526
14.2	Fourier Transform NMR	529
14.3	Shielding	530
14.4	The Number of Signals in the ^1H NMR Spectrum	531
14.5	The Chemical Shift	533
14.6	The Relative Positions of ^1H NMR Signals	534
14.7	Characteristic Values of Chemical Shifts	536
14.8	Integration of NMR Signals	538
14.9	Diamagnetic Anisotropy	540
14.10	Splitting of the Signals	541
14.11	More Examples of ^1H NMR Spectra	545
14.12	Coupling Constants	551
14.13	Splitting Diagrams	554
14.14	Time Dependence of NMR Spectroscopy	557
14.15	Protons Bonded to Oxygen and Nitrogen	558
14.16	Use of Deuterium in ^1H NMR Spectroscopy	560
14.17	Resolution of ^1H NMR Spectra	561
14.18	^{13}C NMR Spectroscopy	562
14.19	DEPT ^{13}C NMR SPECTRA	568

14.20 Two-Dimensional NMR Spectroscopy 569
14.21 Magnetic Resonance Imaging 571
 Summary 572 ■ Key Terms 573 ■ Problems 574
Problem-Solving Strategy 553, 566
Box Features: Nikola Tesla (1856–1943) 529

Part 5 Aromatic Compounds 593

15 Aromaticity • Reactions of Benzene 594

15.1 Criteria for Aromaticity 594
15.2 Aromatic Hydrocarbons 595
15.3 Aromatic Heterocyclic Compounds 598
15.4 Some Chemical Consequences of Aromaticity 599
15.5 Antiaromaticity 602
15.6 A Molecular Orbital Description of Aromaticity and Antiaromaticity 602
15.7 Nomenclature of Monosubstituted Benzenes 604
15.8 How Benzene Reacts 605
15.9 General Mechanism for Electrophilic Aromatic Substitution Reactions 607
15.10 Halogenation of Benzene 608
15.11 Nitration of Benzene 609
15.12 Sulfonation of Benzene 610
15.13 Friedel–Crafts Acylation of Benzene 612
15.14 Friedel–Crafts Alkylation of Benzene 613
15.15 Alkylation of Benzene by Acylation–Reduction 615
 Summary 617 ■ Summary of Reactions 618 ■
 Key Terms 619 ■ Problems 619
Problem-Solving Strategy 601
Box Features: Buckyballs and AIDS 597 ■ The Toxicity of Benzene 605
Thyroxine 609 ■ Incipient Primary Carbocations 614

16 Reactions of Substituted Benzenes 622

16.1 Nomenclature of Disubstituted and Polysubstituted Benzenes 624
16.2 Reactions of Substituents on Benzene 626
16.3 The Effect of Substituents on Reactivity 629
16.4 The Effect of Substituents on Orientation 635
16.5 The Effect of Substituents on pK_a 638
16.6 The Ortho–Para Ratio 640
16.7 Additional Considerations Regarding Substituent Effects 641
16.8 Designing a Synthesis III: Synthesis of Monosubstituted and Disubstituted Benzenes 642
16.9 Synthesis of Trisubstituted Benzenes 644
16.10 Synthesis of Substituted Benzenes Using Arenediazonium Salts 646
16.11 The Arenediazonium Ion as an Electrophile 649
16.12 Mechanism for the Reaction of Amines with Nitrous Acid 651
16.13 Nucleophilic Aromatic Substitution Reactions 653
16.14 Benzyne 655
16.15 Polycyclic Benzenoid Hydrocarbons 657
16.16 Electrophilic Substitution Reactions of Naphthalene and Substituted Naphthalenes 657
 Summary 660 ■ Summary of Reactions 660 ■
 Key Terms 662 ■ Problems 663
Problem-Solving Strategy 640
Box Features: Peyote Cults 622 ■ Measuring Toxicity 623 ■ Nitrosamines 623

Part 6 Carbonyl Compounds and Amines 669

17 Carbonyl Compounds I: Nucleophilic Acyl Substitution 670

 17.1 Nomenclature 671
17.2 Structures of Carboxylic Acids and Carboxylic Acid Derivatives 676
17.3 Physical Properties of Carbonyl Compounds 677
17.4 Naturally Occurring Carboxylic Acids and Carboxylic Acid Derivatives 678
17.5 How Class I Carbonyl Compounds React 681
17.6 Relative Reactivities of Carboxylic Acids and Carboxylic Acid Derivatives 683
17.7 General Mechanism for Nucleophilic Acyl Substitution Reactions 685
17.8 Reactions of Acyl Halides 686
17.9 Reactions of Acid Anhydrides 689
17.10 Reactions of Esters 690
17.11 Acid-Catalyzed Ester Hydrolysis 692
17.12 Hydroxide-Ion-Promoted Ester Hydrolysis 696
17.13 Soaps, Detergents, and Micelles 700
17.14 Reactions of Carboxylic Acids 702
17.15 Reactions of Amides 704
17.16 Acid-Catalyzed Hydrolysis of Amides 706
17.17 Hydrolysis of an Imide: The Gabriel Synthesis 708
17.18 Hydrolysis of Nitriles 709
17.19 Designing a Synthesis IV: The Synthesis of Cyclic Compounds 710
17.20 Synthesis of Carboxylic Acid Derivatives 711
17.21 Dicarboxylic Acids and Their Derivatives 716
 Summary 719 ■ Summary of Reactions 720 ■
 Key Terms 722 ■ Problems 722

Problem-Solving Strategy 703

Box Features: The Discovery of Penicillin 680 ■ Dalmatians: Don't Try to Feed
Mother Nature 680 ■ Aspirin 691 ■ Making Soap 701 ■ Nature's
Sleeping Pill 705 ■ Penicillin and Drug Resistance 707 ■ Penicillins in
Clinical Use 707 ■ Nerve Impulses, Paralysis, and Insecticides 716 ■
Synthetic Polymers 718

18 Carbonyl Compounds II: Nucleophilic Acyl Addition, Nucleophilic Acyl Substitution, and Nucleophilic Addition-Elimination • Reactions of α,β -Unsaturated Carbonyl Compounds 731

 18.1 Nomenclature 732
18.2 Relative Reactivities of Carbonyl Compounds 735
18.3 How Aldehydes and Ketones React 737
18.4 Reactions of Carbonyl Compounds with Carbon Nucleophiles 738
18.5 Reactions of Carbonyl Compounds with Hydride Ion 743
18.6 Reactions of Aldehydes and Ketones with Nitrogen Nucleophiles 747
18.7 Reactions of Aldehydes and Ketones with Oxygen Nucleophiles 753
18.8 Protecting Groups 758
18.9 Addition of Sulfur Nucleophiles 761
18.10 The Wittig Reaction 761
18.11 Stereochemistry of Nucleophilic Addition Reactions:
 Re and *Si* Faces 765
18.12 Designing a Synthesis V: Disconnections, Synthons,
 and Synthetic Equivalents 766
18.13 Nucleophilic Addition to α,β -Unsaturated Aldehydes and Ketones 769
18.14 Nucleophilic Addition to α,β -Unsaturated Carboxylic
 Acid Derivatives 772

18.15	Enzyme-Catalyzed Additions to α,β -Unsaturated Carbonyl Compounds	773
	Summary	774
	■ Summary of Reactions	775
	Key Terms	779
	■ Problems	779
	Problem-Solving Strategy	757
	Box Features: Butanedione: an Unpleasant Compound	735
	Nonspectrophotometric Identification of Aldehydes and Ketones	752
	■ Preserving Biological Specimens	755
	■ β -Carotene	764
	■ Enzyme-Catalyzed Carbonyl Additions	766
	■ Synthesizing Organic Compounds	768
	■ Semisynthetic Drugs	768
	■ Cancer Chemotherapy	772
	■ Enzyme-Catalyzed Cis–Trans Interconversion	774

19 Carbonyl Compounds III: Reactions at the α -Carbon 788

19.1	Acidity of α -Hydrogens	789
19.2	Keto–Enol Tautomerism	791
19.3	How Enols and Enolate Ions React	793
19.4	Halogenation of the α -Carbon of Aldehydes and Ketones	795
19.5	Halogenation of the α -Carbon of Carboxylic Acids: The Hell–Volhard–Zelinski Reaction	796
19.6	α -Halogenated Carbonyl Compounds in Synthesis	797
19.7	Using LDA to Form an Enolate	798
19.8	Alkylation of the α -Carbon of Carbonyl Compounds	799
19.9	Alkylation and Acylation of the α -Carbon via an Enamine Intermediate	802
19.10	Alkylation of the β -Carbon: The Michael Reaction	804
19.11	The Aldol Addition	806
19.12	Dehydration of Aldol Addition Products: Formation of α,β -Unsaturated Aldehydes and Ketones	807
19.13	The Mixed Aldol Addition	808
19.14	The Claisen Condensation	810
19.15	The Mixed Claisen Condensation	812
19.16	Intramolecular Condensation and Addition Reactions	814
19.17	Decarboxylation of 3-Oxocarboxylic Acids	818
19.18	The Malonic Ester Synthesis: Synthesis of Carboxylic Acids	821
19.19	The Acetoacetic Ester Synthesis: Synthesis of Methyl Ketones	822
19.20	Designing a Synthesis VI: Making New Carbon–Carbon Bonds	824
19.21	Reactions at the α -Carbon in Biological Systems	826
	Summary	829
	■ Summary of Reactions	830
	Key Terms	832
	■ Problems	833
	Problem-Solving Strategy	801, 817
	Box Features: The Synthesis of Aspirin	801
	■ The Hunsdiecker Reaction	820

20 More About Oxidation–Reduction Reactions 841

20.1	Reduction Reactions	844
20.2	Oxidation of Alcohols	850
20.3	Oxidation of Aldehydes and Ketones	853
20.4	Oxidation of Alkenes with Peroxyacids	855
20.5	Designing a Synthesis VII: Controlling Stereochemistry	857
20.6	Hydroxylation of Alkenes	858
20.7	Oxidative Cleavage of 1,2-Diols	859
20.8	Oxidative Cleavage of Alkenes	861
20.9	Oxidative Cleavage of Alkynes	866
20.10	Designing a Synthesis VIII: Functional Group Interconversion	867
20.11	Biological Oxidation–Reduction Reactions	868
20.12	Oxidation of Hydroquinones and Reduction of Quinones	870
	Summary	872
	■ Summary of Reactions	872
	Key Terms	875
	■ Problems	875
	Problem-Solving Strategy	860

Box Features: Blood Alcohol Content 851	■ The Role of Hydrates in the
Oxidation of Primary Alcohols 851	■ Treating Alcoholics with Antabuse 869
■ An Unusual Antidote 870	■ Fetal Alcohol Syndrome 870
The Chemistry of Photography 872	

21 More About Amines • Heterocyclic Compounds 883

21.1	More About Nomenclature 884
21.2	Amine Inversion 885
21.3	More About the Acid–Base Properties of Amines 886
21.4	Reactions of Amines 887
21.5	Reactions of Quaternary Ammonium Hydroxides 889
21.6	Phase-Transfer Catalysis 892
21.7	Oxidation of Amines; The Cope Elimination Reaction 894
21.8	Synthesis of Amines 895
21.9	Aromatic Five-Membered-Ring Heterocycles 897
21.10	Aromatic Six-Membered-Ring Heterocycles 902
21.11	Biologically Important Heterocycles 907
	Summary 912 ■ Summary of Reactions 912 ■
	Key Terms 915 ■ Problems 915
	Box Features: A Useful Bad-Tasting Compound 892 ■ Porphyrin, Bilirubin, and Jaundice 912

Part 7 Bioorganic Compounds 919

22 Carbohydrates 921

22.1	Classification of Carbohydrates 922
22.2	The D and L Notation 923
22.3	Configurations of Aldoses 924
22.4	Configurations of Ketoses 926
22.5	Redox Reactions of Monosaccharides 926
22.6	Osazone Formation 929
22.7	Chain Elongation: The Kiliani–Fischer Synthesis 931
22.8	Chain Shortening: The Ruff Degradation 931
22.9	Stereochemistry of Glucose: The Fischer Proof 932
22.10	Cyclic Structure of Monosaccharides: Hemiacetal Formation 934
22.11	Stability of Glucose 937
22.12	Acylation and Alkylation of Monosaccharides 939
22.13	Formation of Glycosides 939
22.14	The Anomeric Effect 941
22.15	Reducing and Nonreducing Sugars 941
22.16	Determination of Ring Size 942
22.17	Disaccharides 943
22.18	Polysaccharides 946
22.19	Some Naturally Occurring Products Derived From Carbohydrates 949
22.20	Carbohydrates on Cell Surfaces 951
22.21	Synthetic Sweeteners 953
	Summary 954 ■ Summary of Reactions 955 ■ Key Terms 957 ■
	Problems 957
	Box Features: Measuring the Blood Glucose Levels of Diabetics 930 ■ Glucose/Dextrose 934 ■ Lactose Intolerance 945 ■ Galactosemia 945 ■ Why the Dentist is Right 947 ■ Controlling Fleas 949 ■ Heparin 950 ■ Vitamin C 951 ■ The Wonder of Discovery 954

23 Amino Acids, Peptides, and Proteins 959

3.1 Classification and Nomenclature of Amino Acids 960
3.2 Configuration of Amino Acids 964
3.3 Acid-Base Properties of Amino Acids 965
3.4 The Isoelectric Point 966
3.5 Separation of Amino Acids 968
3.6 Resolution of Racemic Mixtures of Amino Acids 972
3.7 Peptide Bonds and Disulfide Bonds 973
3.8 Some Interesting Peptides 976
3.9 Strategy of Peptide Bond Synthesis: N-Protection and C-Activation 977
3.10 Automated Peptide Synthesis 980
3.11 Protein Structure 982
3.12 Determining the Primary Structure of a Protein 983
3.13 Secondary Structure of Proteins 989
3.14 Tertiary Structure of Proteins 991
3.15 Quaternary Structure of Proteins 993
3.16 Protein Denaturation 994
 Summary 994 ■ Key Terms 995 ■ Problems 995

Problem-Solving Strategy 985

Box Features: Amino Acids and Disease 964 ■ Water Softeners: Examples of Cation-Exchange Chromatography 970 ■ Hair: Straight or Curly? 975 ■ Primary Structure and Evolution 983 ■ β -Peptides: An Attempt to Improve on Nature 991

24 Catalysis 999

24.1 Catalysis in Organic Reactions 1000
24.2 Nucleophilic Catalysis 1001
24.3 Acid Catalysis 1003
24.4 Base Catalysis 1006
24.5 Metal-Ion Catalysis 1007
24.6 Intramolecular Reactions 1010
24.7 Intramolecular Catalysis 1012
24.8 Catalysis in Biological Reactions 1015
24.9 Enzyme-Catalyzed Reactions 1017
 Summary 1029 ■ Key Terms 1029 ■ Problems 1030
Box Features: The Nobel Prize 1001

25 The Organic Mechanisms of the Coenzymes • Metabolism 1033

25.1 Overall View of Metabolism 1035
25.2 Niacin: The Vitamin Needed for Many Redox Reactions 1039
25.3 Flavin Adenine Dinucleotide and Flavin Mononucleotide: Vitamin B₂ 1044
25.4 Thiamine Pyrophosphate: Vitamin B₁ 1047
25.5 Biotin: Vitamin H 1052
25.6 Pyridoxal Phosphate: Vitamin B₆ 1054
25.7 Coenzyme B₁₂: Vitamin B₁₂ 1061
25.8 Tetrahydrofolate: Folic Acid 1064
25.9 Vitamin KH₂: Vitamin K 1068
 Summary 1071 ■ Key Terms 1071 ■ Problems 1071
Box Features: Vitamin B₁ 1035 ■ Niacin Deficiency 1040 ■ Heart Attacks: Assessing the Damage 1058 ■ Phenylketonuria: An Inborn Error of Metabolism 1058 ■ The First Antibacterial Drugs 1068 ■ Too Much Broccoli 1070

26 Lipids 1075

26.1 Fatty Acids 1076
26.2 Waxes 1078
26.3 Fats and Oils 1078
26.4 Membranes 1082
26.5 Prostaglandins 1085
26.6 Terpenes 1088
26.7 Vitamin A 1090
26.8 Biosynthesis of Terpenes 1091
26.9 Steroids 1097
26.10 Biosynthesis of Cholesterol 1101
26.11 Synthetic Steroids 1102
 Summary 1102 ■ Key Terms 1103 ■ Problems 1103
Box Features: Omega Fatty Acids 1077 ■ Olestra: Nonfat with Flavor 1080
■ Whales and Echolocation 1081 ■ Is Chocolate a Health Food? 1083 ■
Multiple Sclerosis and the Myelin Sheath 1084 ■ Cholesterol and Heart Disease 1100 ■ Clinical Treatment of High Cholesterol 1100

27 Nucleosides, Nucleotides, and Nucleic Acids 1106

27.1 Nucleosides and Nucleotides 1106
27.2 ATP: The Carrier of Chemical Energy 1110
27.3 Three Mechanisms for Phosphoryl Transfer Reactions 1113
27.4 The “High-Energy” Character of Phosphoanhydride Bonds 1115
27.5 Kinetic Stability of ATP in the Cell 1117
27.6 Other Important Nucleotides 1117
27.7 The Nucleic Acids 1118
27.8 Helical Forms of DNA 1122
27.9 Biosynthesis of DNA: Replication 1123
27.10 Biosynthesis of RNA: Transcription 1124
27.11 Ribosomal RNA 1125
27.12 Transfer RNA 1126
27.13 Biosynthesis of Proteins: Translation 1128
27.14 Why DNA Contains Thymine Instead of Uracil 1132
27.15 Determining the Base Sequence of DNA 1133
27.16 Laboratory Synthesis of DNA Strands 1135
27.17 Rational Drug Design 1140
 Summary 1142 ■ Key Terms 1143 ■ Problems 1143
Box Features: The Structure of DNA: Watson, Crick, Franklin, and Wilkins 1107 ■
Sickle Cell Anemia 1131 ■ Antibiotics that Act by Inhibiting Translation 1132
■ DNA Fingerprinting 1135

Part 8 Special Topics in Organic Chemistry 1145

28 Synthetic Polymers 1146

28.1 General Classes of Synthetic Polymers 1147
28.2 Chain-Growth Polymers 1148
28.3 Stereochemistry of Polymerization • Ziegler–Natta Catalysts 1159
28.4 Polymerization of Dienes • The Manufacture of Rubber 1160
28.5 Copolymers 1162
28.6 Step-Growth Polymers 1163
28.7 Physical Properties of Polymers 1167
 Summary 1170 ■ Key Terms 1171 ■ Problems 1172
Box Features: Recycling Symbols 1149 ■ Designing a Polymer 1169

9 Pericyclic Reactions 1175

- 1 Three Kinds of Pericyclic Reactions 1175
- 2 Molecular Orbitals and Orbital Symmetry 1178
- 3 Electrocyclic Reactions 1182
- 4 Cycloaddition Reactions 1188
- 5 Sigmatropic Rearrangements 1192
- 6 Pericyclic Reactions in Biological Systems 1197
- 7 Summary of the Selection Rules for Pericyclic Reactions 1199
- Summary 1199 ■ Key Terms 1200 ■ Problems 1200
- Box Features:** Cold Light 1191

10 The Organic Chemistry of Drugs: Discovery and Design 1204

- 0.1 Naming Drugs 1207
- 0.2 Lead Compounds 1208
- 0.3 Molecular Modification 1209
- 0.4 Random Screening 1211
- 0.5 Serendipity in Drug Development 1212
- 0.6 Receptors 1214
- 0.7 Drugs as Enzyme Inhibitors 1217
- 0.8 Designing a Suicide Substrate 1220
- 0.9 Quantitative Structure–Activity Relationships (QSAR) 1221
- 0.10 Molecular Modeling 1223
- 0.11 Combinatorial Organic Synthesis 1223
- 0.12 Antiviral Drugs 1225
- 0.13 Economics of Drugs • Governmental Regulations 1225
- Summary 1226 ■ Key Terms 1227 ■ Problems 1227
- Box Features:** Orphan Drugs 1226

Appendices A1

- I Physical Properties of Organic Compounds A-1
- II pK_a Values A-8
- III Derivations of Rate Laws A-10
- IV Summary of Methods Used to Synthesize a Particular Functional Group A-13
- V Summary of Methods Employed to Form Carbon–Carbon Bonds A-17
- VI Spectroscopy Tables A-18

Answers to Selected Problems A-24

Glossary G-1

Photo Credits P-1

Index I-1