Contents

Pretace		page ix
1	Introduction to concepts	1
1.1	Fluids in the Universe	2
1.2	The concept of a 'fluid element'	4
1.3	Formulation of the fluid equations	5
1.4	Relation between the Eulerian and Lagrangian	
	descriptions	7
1.5	Kinematical concepts	8
2	The fluid equations	12
2.1	Conservation of mass	12
2.2	Pressure	14
2.3	Momentum equations	15
2.4	Momentum equation in conservative form: the	
	stress tensor and concept of ram pressure	17
3	Gravitation	20
3.1	The gravitational potential	20
3.2	Poisson's equation	22
3.3	Using Poisson's equation	24
3.4	The potential associated with a spherical mass	
	distribution	27
	Gravitational potential energy	28
3.6	The virial theorem	30
4	The energy equation	32
4.1	Ideal gases	32
4.2	Barotropic equations of state: the isothermal	
	and adiabatic cases	33
4.3	Energy equation	37
	Energy transport	39
4.5	The form of $\dot{Q}_{\rm cool}$	45

5	Hydrostatic equilibrium	46
5.1	Basic equations	46
5.2	The isothermal slab	47
5.3	An isothermal atmosphere with constant g	49
5.4	Stars as self-gravitating polytropes	50
5.5	Solutions for the Lane-Emden equation	52
5.6	The case of $n = \infty$	55
5.7	Scaling relations	56
5.8	Examples of astrophysical interest	60
5.9	Summary: general method for scaling relations	62
6	Propagation of sound waves	63
6.1	Sound waves in a uniform medium	. 63
	Propagation of sound waves in a stratified	
	atmosphere	68
6.3	General approach to wave propagation	
	problems	73
6.4	Transmission of sound waves at interfaces	74
7	Supersonic flows	77
7.1	Shocks	78
7.2	Isothermal shocks	85
8	Blast waves	89
8.1	Strong explosions in uniform atmospheres	89
	Blast waves in astrophysics and elsewhere	96
	Structure of the blast wave	99
8.4	Breakdown of the similarity solution	102
	The effects of cooling and blow out from	
	galactic discs	104
9	Bernoulli's equation	107
9.1	Basic equation	107
	De Laval nozzle	113
	Spherical accretion and winds	118
	Stellar winds	123
	General steady state solutions	126
0	Fluid instabilities	128
0.1	Rayleigh-Taylor instability	128
	Gravitational instability (Jeans instability)	139

10.3	Thermal instability	142
10.4	Method summary	149
11	Viscous flows	150
11.1	Linear shear and viscosity	150
11.2	Navier-Stokes equation	153
11.3	Evolution of vorticity in viscous flows	157
11.4	Energy dissipation in incompressible viscous flows	158
11.5	Viscous flow through a circular pipe and the	
	transition to turbulence	159
12	Accretion discs in astrophysics	163
12.1	Derivation of viscous evolution equations for	
	accretion discs	165
12.2	Viscous evolution equation with constant viscosity	167
12.3	Steady thin discs	173
12.4	Radiation from steady thin discs	176
13	Plasmas	179
13.1	Magnetohydrodynamic equations	180
13.2	Charge neutrality	184
13.3	Ideal hydromagnetic equations	186
13.4	Waves in plasmas	190
13.5	The Rayleigh-Taylor instability revisited	195
Appe	endix Equations in curvilinear coordinates	200
Exercises		206
Books for background and further reading		222
Index		224