Contents

Preface	page xiii
Acknowledgements	xvi
Physical constants and conversion factors	xvii
1 Some fundamentals	1
Indications that dynamics of atoms in a crystal are important:	
failure of the static lattice approximation	1
Interatomic forces	3
The variety of interatomic forces	3
Lattice energy	8
Worked example: a simple model for NaCl	10
Transferable models	12
Waves in crystals	14
The wave equation	14
Travelling waves in crystals	15
Summary	17
2 The harmonic approximation and lattice dynamics of	
very simple systems	18
The harmonic approximation	18
The equation of motion of the one-dimensional monatomic chain	20
Reciprocal lattice, the Brillouin zone, and allowed wave vectors	21
The long wavelength limit	24
Extension to include distant neighbours	25
Three-dimensional monatomic crystals	26
Worked example: the lattice dynamics of the rare-gas solids	28
Summary	34
3 Dynamics of diatomic crystals: general principles	36
The basic model	36
Equations of motion	37

Contents

	Solution in the long-wavelength limit	38
	Some specific solutions	40
	Generalisation to more complex cases	43
	Examples	46
	Summary	53
4	How far do the atoms move?	55
	Normal modes and normal mode coordinates	55
	The quantisation of normal modes	57
	Vibrational energies and normal mode amplitudes	58
	So how far do the atoms actually move?	60
	The crystallographic temperature factor	62
	Summary	63
5	Lattice dynamics and thermodynamics	64
	The basic thermodynamic functions	64
	Evaluation of the thermodynamic functions and the density of states	66
	The heat capacity	70
	Worked example: the heat capacity of NaCl	75
	Free energy minimisation methods and the quasi-harmonic	
	approximation	76
	Reconstructive phase transitions	77
	Summary	79
6	Formal description	80
	Review and problems	80
	The diatomic chain revisited	81
	The equations of motion and the dynamical matrix	83
	Extension for molecular crystals	87
	The dynamical matrix and symmetry	88
	Extension for the shell model	88
	Actual calculations of dispersion curves	91
	Normal mode coordinates	93
	Summary	94
7	Acoustic modes and macroscopic elasticity	95
	The behaviour of long-wavelength acoustic modes	95
	Acoustic mode frequencies and the elastic constant tensor	96
	Worked example: acoustic waves in a cubic crystal	99
	Summary	100
8	Anharmonic effects and phase transitions	101
	Failures of the harmonic approximation	101
	Anharmonic interactions	101
	Simple treatment of thermal conductivity	103

	Contents	xi
	Temperature dependence of phonon frequencies	105
	Displacive phase transitions and soft modes	109
	Soft modes and the Landau theory of phase transitions	120
	The origin of the anharmonic interactions	130
	Summary	130
9	Neutron scattering	132
	Properties of the neutron as a useful probe	132
	Sources of thermal neutron beams	134
	Interactions of neutrons with atomic nuclei	135
	The neutron scattering function	136
	Conservation laws for one-phonon neutron scattering	141
	Experimental inelastic neutron scattering	142
	Advantages of neutron scattering and some problems with	
	the technique	147
	Summary	150
10	Infrared and Raman spectroscopy	151
	Introduction	151
	Vibrational spectroscopy by infrared absorption	153
	Raman spectroscopy	156
	Advantages and disadvantages of spectroscopy	159
	Qualitative applications of infrared and Raman spectroscopy	161
	Quantitative applications of infrared and Raman spectroscopy	162
	Summary	166
11	Formal quantum-mechanical description of lattice vibrations	167
111	Some preliminaries	167
	Quantum-mechanical description of the harmonic crystal	169
	The new operators: creation and annihilation operators	171
	The Hamiltonian and wave function with creation and	
	annihilation operators	172
	Time and position dependence	174
	Applications	175
	Summary	178
12	Molecular dynamics simulations	179
	The molecular dynamics simulation method	179
	Details of the molecular dynamics simulation method	181
	Analysis of the results of a simulation	184
	Model systems	192
	Limitations of the molecular dynamics simulation method	192
	Summary	194

. .

Contents

xii

٠.

	195
The Ewald sum for the Coulomb energy	195
Extension for other terms of the functional form r^{-n} : the case n	=6 199
Appendix B Lattice sums	202
Two fundamental results	202
Derivation of equation (4.13)	203
Derivation of equation (4.20)	204
Derivation of equation (6.44)	204
Derivation of equation (A.5)	206
Appendix C Bose–Einstein distribution and the	
thermodynamic relations for phonons	207
Appendix D Landau theory of phase transitions	210
The order parameter	210
Landau free energy for second-order phase transitions	212
First-order phase transitions	214
Tricritical phase transitions	215
Interaction between the order parameter and other variables	215
Landau free energy functions with cubic terms	218
Critique of Landau theory	219
Appendix E Classical theory of coherent neutron scattering	221
General scattering formalism	221
Time dependence and the inelastic scattering function	225
Scattering cross section	227
Appendix F Time correlation functions	229
Time-dependent correlation functions	229
Power spectra	230
Example: the velocity autocorrelation function and the	
phonon density of states	231
Appendix G Commutation relations	233
Appendix H Published phonon dispersion curves for	
non-metallic crystals: update of previous compilation	236
Molecular crystals	236
Silicates	237
Ionic crystals	238
References	240
	254
Index	