Vacuum Science and Technology is a comprehensive book on vacuum physics and technology. Vacuum plays a crucial role in science and industry; we only need to think of examples like vacuum packaging, light bulbs, freeze drying of foodstuffs, X-ray tubes, flat panel displays, solar cells, space technology, the production of microchips, vacuum coating and, closely related to it, more fundamental instances such as high energy storage rings and the research on solid state surfaces. It's not too much to say that without the ability to evacuate both large and small volumes, our society would remain at the technological level of the early 20th century. This book is a completely revised and updated English translation of the Dutch-language standard work 'Basisboek Vacuümtechniek', first published in 2000 by the Dutch Vacuum Society NEVAC, and covers all the currently relevant vacuum topics. Throughout the volume, the emphasis is on the basic physics which underlies present day technology. The book serves both as an excellent reference work as well as a flexible textbook with a unique graded structure. Text meant for high graduates is placed behind margin lines. Omitting this text gives a textbook for middle graduates. Both with and without the margin texts the volume shows the desired internal coherence for the associated training level. Several chapters are provided with exercises, divided in two levels of difficulty. Researchers, engineers, students and course participants will experience the book as a synthesis of vacuum physics and modern practice.

Dr ir Bert Suurmeijer was a former staff member of the Surface Physics and Thin Film Group, Department of Applied Physics, State University Groningen, NL. He lectured 'Vacuum Physics and Technology' for more than 25 years to master students of applied physics and university graduates with leading jobs in vacuum related research institutes and industries. In the 1990's he was chairman of the education committee of the Dutch Vacuum Society NEVAC for several years and is still a member of this committee today.

Ing Theo Mulder was a former technician at the nuclear physics institute NIKHEF, Amsterdam, NL and then for about 25 years a sales engineer at Leybold, a leading German vacuum corporation. For many years he has delivered lecture courses on vacuum technology for middle and low graduates under the auspices of the Dutch Vacuum Society NEVAC, as well as vacuum courses for high and middle graduates at the High Tech Institute, Eindhoven, NL. He has been a

member of the NEVAC education committee since 1988.

Dr ir Jan Verhoeven was a former leader of different vacuum related groups at the worldfamous FOM institute AMOLF, Amsterdam, NL. Since 2007 he works as an independent 'Thin Films and Multilayer X-ray Optics Consultant'. He lectured vacuum courses for university and middle graduates at the FOM Institute for more than 20 years. In the 1980's he was chairman of the education committee of the Dutch Vacuum Society NEVAC for several years.

All three authors are a honorary member of the Dutch Vacuum Society NEVAC.

Chapter 1		Basic concepts	1
929 J D B D	1.1	Introduction	1
	1.2	Historical overview	2
	1.3	Molecules and atoms	5
	1.4	Physical states of matter	8
	1.5	Kinetic theory of gases	9
	1.6	Molecular velocities and energies	10
	1.7	Pressure of a gas	16
	1.8	Ideal gas law	20
	1.9	Dalton's law	21
	1.10	Avogadro's law; equation of state for an ideal gas	21
	1.11	Van der Waals equation of state	23
	1.12	Mean free path	25
	1.13	Rate of incidence of gas particles on a surface	30
	1.14	Energy flow to a wall	32
	1.15	Vapour pressure; rate of evaporation	34
	1.16	Transport phenomena in gases	36
	1.17	Transport of a physical quantity G in a viscous gas	37
	1.18	Viscosity	40
	1.18.1	Viscosity in a dense gas (Kn « 1)	40
	1.18.2	Viscosity in a rarefied gas (Kn » 1)	42
	1.19	Thermal transpiration (thermo-molecular flow)	45
	1.20	Thermal conductivity	46
	1.20.1	Thermal conductivity at high pressures (Kn « 1)	46
	1.20.2	Thermal conductivity at low pressures (Kn » 1)	50
	1.21	Diffusion of gases	54
	1211	Fick's diffusion laws	54

	1.21.2	Self-diffusion	55
	1.21.3	Diffusion in gas mixtures	57
		Exercises	61
Chapter 2	ce, and T	Gas-solid interaction	63
	2.1	Introduction	63
	2.2	Physical adsorption	63
	2.3	Why no mirror reflection at a solid surface?	65
	2.4	Lennard-Jones potential	67
	2.5	Rate of adsorption	71
	2.6	Residence time	71
	2.7	Rate of desorption	73
	2.8	Adsorption-desorption equilibrium	75
	2.9	Adsorption isotherms	76
	2.9.1	Monolayer (Langmuir) adsorption	76
	2.9.2	Multilayer (BET) adsorption	78
	2.10	Surface migration; mobile versus localized adsorption	81
	2.11	Porous materials; persorption	82
	2.12	Chemisorption	85
	2.13	Condensation	89
	2.14	Absorption, diffusion and permeation	90
	2.15	Outgassing	97
		Exercises	98
Chapter 3		Flow of gases through tubes and orifices	101
	3.1	Introduction	101
	3.2	Thermodynamic laws	104
	3.2.1	First law of thermodynamics	104
	3.2.2	Second law of thermodynamics; isentropic process	107
	3.2.3	Equation of state	107
	3.3	Overview of flow laws	109
	331	Continuity equation	109

3.3.2 Bernoulli's law
3.3.3 Conservation of momentum
3.4 Supersonic flow through a nozzle or aperture
3.5 The shock wave
3.6 Laminar flow
3.7 'Blocked' gas flow in a tube

	3.8	Molecular flow	134
	3.8.1	Molecular flow through an orfice	135
	3.8.2	Molecular flow in a (cylindrical) tube	136
	3.9	Definition of the concept of 'conductance'	139
	3.10	Conductance in case of a supersonic flow	140
	3.11	Conductance in case of a laminar flow	141
	3.12	Conductance in the case of a blocked flow	144
	3.13	Conductance in case of a molecular flow	144
	3.14	Conductance in the transition domain between	
		viscous and molecular flow	152
	3.15	Conductance of complex vacuum components	153
	3.16	Pumping speed	153
	3.17	Calculation examples in a simple vacuum system	155
		Exercises	157
Chapter 4		Vacuum pumps and pumping systems	160
	4.1	Introduction	160
	4.2	Definitions	163
	4.3	Compression processes in transfer pumps	166
	4.4	Liquid-sealed rotary pumps	168
	4.4.1	Liquid ring pump	168
	4.4.2	Rotary-vane pump	175
	4.4.3	Gas ballast	181
	4.4.4	Oil-sealed multivane pump	189
	4.4.5	Rotary-piston pump	190
	4.4.6	Oil-sealed rotary pumps in practice; pump accessories	193
	4.5	Liquid jet pump	198
	4.6	Vapour-stream pumps	199
	4.6.1	Steam jet pump	208
	4.6.2	Diffusion pump	211
	4.6.3	Pump fluids	223
	4.6.4	Diffusion pump system operation	225
	4.6.5	Hints and safety measures for diffusion pump systems	228
	4.6.6	Vapour booster pump	229
	4.7	Oscillation pumps	230
	4.7.1	Piston pump	231
	4.7.2	Diaphragm pump	233
	4.8	Dry rotary pumps	235

4.8.1	Side channel blower	235
4.8.2	Oil-free multivane pump	239
4.8.3	Scroll pump	240
4.8.4	Roots pump	243
4.8.5	Claw Pump	260
4.8.6	Screw pump	268
4.9	Molecular pumps	270
4.9.1	Molecular dragpump (MDP)	272
4.9.2	MDP/side channel pump	280
4.9.3	Turbomolecular pump (TMP)	285
4.9.4	Design and engineering aspects of turbomolecular pumps	293
4.9.5	Turbomolecular pump system operation	301
4.9.6	Hybrid molecular pump (HMP)	303
4.10	Capture pumps	307
4.10.1	Sorption pump	308
4.10.2	Getter pump	318
4.10.3	Sputter-ion pump	325
4.10.4	Cryopump	335
4.10.5	Cryopump system operation	348
4.11	Pump selection	351
4.11.1	Quantity of gas (throughput) Q to be pumped	351
4.11.2	Desired operating pressure p	352
4.11.3	Required pumping speed S	353
4.11.4	Economic aspects	353
4.11.5	Pumping aggressive, toxic or explosive gases and vapours	354
4.11.6	Pumping large amounts of gas	356
4.11.7	Obtaining ultra-high vacuum	358
	Exercises	359
	Pressure measurement	367
5.1	Introduction	367

Chapter 5

5.2 Absolute gauges
5.2.1 U-tube manometer
5.2.2 McLeod manometer
5.2.3 Knudsen gauge
5.3 Mechanical (aneroid) gauges
5.3.1 Bourdon gauge
5.3.2 Capsule dial gauge

4.72

5.3.3	Diaphragm vacuum gauge		388
5.3.4	Piezoresistive pressure gauge		389
5.3.5	Capacitance gauge		392
5.4	Viscosity gauges		396
5.4.1	Spinning rotor gauge		396
5.4.2	Quartz crystal friction gauge		401
5.5	Heat conductivity gauges		404
5.5.1	Principle and operation		404
5.5.2	Configurations and measuring methods		411
5.6	Hot cathode ionization gauges		416
5.6.1	Principle and operation		416
5.6.2	Properties		424
5.6.3	Configurations		431
5.7	Cold cathode ionization gauges		438
5.7.1	Principle and operation		438
5.7.2	Properties		443
5.7.3	Configurations		445
	Exercises		448
	Partial pressure gauges and residual	gas analysis	452
6.1	Introduction		452
6.2	The ion source		454
6.3	The mass analyzer section; resolution		460
6.4	180° magnetic deflection mass spectron	neter	465
6.5	Quadrupole mass spectrometer		472
6.6	Autoresonant trap mass spectrometer		480
6.7	The ion collector; electron multipliers		486
6.8	Interpretation of residual gas spectra		490
6.9	Spectrum analysis		494
6.10	Spectra of vacuum systems		498

Exercises

Chapter 6

Measurements of pump properties7.1Introduction7.2Measurement of ultimate pressure7.3Pumping speed measuring procedures7.3.1Constant volume method

7.3.2 Constant pressure method

503

	7.4	Measurement of the pumping speed of a	
		(ultra-)high vacuum pump	515
	7.5	Measurement of the pump's compression ratio	517
		Exercises	518
Chapter 8		Leak detection	520
	8.1	Introduction	520
	8.2	Conceptual considerations; leak rate	521
	8.3	Leak detection methods	523
	8.3.1	Pressurizing (inside-out) methods	524
	8.3.2	Reduced pressure (outside-in) methods	526
	8.3.3	Atmosphere method versus bombing	529
	8.4	The use of helium as a tracer gas	532
	8.5	Reviewing the symptoms; troubleshooting	535
	8.6	Leak testing and leak finding	537
	8.7	Helium leak detectors	538
	8.7.1	The mass spectrometer	538
	8.7.2	The pumping system	540
	8.7.3	Response time	543
	8.7.4	Sensitivity	546
	8.7.5	Reference leak	548
	8.8	Leak detection by vacuum gauge or RGA	549
	8.9	Inside-out sniffing systems	552
	8.9.1	Helium sniffer	552
	8.9.2	Hydrogen leak detector	553
	8.9.3	Quartz window sensor	555
	8.9.4	Halogen leak detector	556
	8.9.5	Multigas sniffing systems	558
	8.10	Leak detection of (ultra-)high vacuum systems	559
	8.11	Directives for leak testing and the prevention of leaks	569
		Exercises	570

Chapter 9

Sealing techniques and system components
9.1 Introduction
9.2 Demountable joints
9.2.1 Grooved flanges with elastomer sealing
9.2.2 The Pneurop standard flange system
9.2.3 Metal seals

	9.2.4	Flange constructions for metal sealing	581
	9.3	Permanent sealing techniques	584
	9.3.1	Welding	584
	9.3.2	Brazing and soldering	588
	9.3.3	Glass-to-metal and ceramic-to-metal seals	591
	9.3.4	Gluing	592
	9.4	Vacuum feedthroughs	593
	9.4.1	Electrical feedthroughs	593
	9.4.2	Motion feedthroughs	594
	9.4.3	Manipulator systems	598
	9.4.4	Liquid feedthroughs	598
	9.4.5	Optical windows	599
	9.5	Vacuum valves	599
	9.5.1	Sealing constructions	600
	9.5.2	Actuation mechanisms	603
	9.5.3	Configurations	604
	9.6	Fine control gas admission systems	607
	9.6.1	Needle valves	607
	9.6.2	Bakeable UHV precision dosing valves	608
	9.6.3	Permeation valves	609
	9.6.4	Mass flow controllers	611
	9.7	Bellows	612
	9.7.1	Corrugated bellows	612
	9.7.2	Diaphragm bellows	613
Chapter 10		Material selection, lubrication, cleaning,	
		working discipline	614
	10.1	General considerations on the selection of materials	614
	10.2	Vacuum properties of materials	615
	10.3	Surface outgassing	618

- - -

10.12	Specific selection crit
10.13	Specific selection crit
10.14	Lubrication in vacuun
10.14.1	Dry lubrication
10.14.2	Wet lubrication
10.15	Cleaning procedures
10.15.1	Bulk outgassing
10.15.2	The 'physical' surface
10.15.3	Surface contamination
10.15.4	Adsorbed gases and
10.16	General rules for wor
10.16.1	What's clean should
10.16.2	Pumping procedures
10.16.3	Operating errors and

Appendices

A B C D Units and symbols Tables and diagrams ISO symbols for vacu Properties and applic

Answers to the exerc

Index

teria for ceramics	639
teria for synthetic materials	641
n mais anibiatilision 1988	646
	647
	648
S.3.4 Giulng	649
	649
e	649
n lbeet notioN S.A.B	650
vapours	653
king with vacuum systems	655
be kept clean	655
9.5 Vacumuteatras	656
malfunctions	657
	659
sevievelt 1.8.6	663
um components	678
cations of materials in vacuum	683
sises	689
	695