H₂, He₂ and their ions Full contents of the set of the s Photoelectoon appectige and the petromation and the

Introducing molecular orbitals

S.A 285

8.1057

109 E C 3

4

14

erc Further reading

arc Answers to self-test exercises as

Part I The fundamentals

Molecules and molecular structures: an overview 1

- Simple covalent molecules 1.1
- Structure determination by X-ray diffraction 1.2

1.3	Where are the bonds?	17
1.4	Types of bonding	19
1.5	Weaker non-bonded interactions	21
1.6	Solids	25
1.7	How to draw molecules	25
1.8	Common names and abbreviations	27
1.9	The ideal gas	28
1.10	Moving on	32
Ansv	vers to self-test exercises	34
2 Ele	ectrons in atoms	35
2.1	Introducing quantum mechanics	36
2.2	Introducing orbitals	39
2.3	Hydrogen atomic orbitals	43
2.4	Spin	62
2.5	Hydrogen-like atoms	63
2.6	Multi-electron atoms	64
2.7	Ionization energies	71
2.8	Moving on	77
Furth	ner reading	77
Ansv	vers to self-test exercises	77
3 Sy	Calculating the entropy change of the Universe grtemm	79
3.1	Why symmetry is important	79
3.2	Symmetry elements and symmetry operations	80
3.3	Point groups	85
3.4	Applications of symmetry	89
3.5	Classification of orbitals according to symmetry	93
3.6	Moving on	96

Answers to self-test exercises 96

Contents xii

4 EI6	ectrons in molecules: diatomics	5
4.1	Introducing molecular orbitals	
4.2	H ₂ , He ₂ and their ions	
4.3	Homonuclear diatomics of the second	ond period
4.4	Photoelectron spectra	
4.5	Heteronuclear diatomics	
4.6	Moving on	
Furt	her reading	
Ansv	wers to self-test exercises	
8 5 Ele	ectrons in molecules: polyatom	ics and mole soluce
5.1	The simplest triatomic: H ₃ ⁺	

5.2	More complex linear triatomics		146
5.3	MOs of water and methane		149
5.4	Hybrid atomic orbitals		153
5.5	Comparing the hybrid and full MO a	pproaches	159
5.6	Extending the hybrid concept		161
5.7	Bonding in organic molecules		164
5.8	Delocalized bonding		167
5.9	Delocalized structures including het	teroatoms	8 175
89 5.10	Moving on		0.177
SE Furth	ner reading		011178
Answ	vers to self-test exercises		enA 178
6 Bol	nding in solids		181
6.1	Metallic bonding: introducing bands	Introducing quantum	182
6.2	Ionic solids		190
6.3	Moving on		199

Further readin	g	199
Answers to se	If-test exercises	199
7 Thermodyr	namics and the Second Law	201 Multi-electron
7.1 Spontar	neous processes	202
7.2 Propert	ies of matter: state functions	204
7.3 Entropy	and the Second Law	205
7.4 Heat, in	ternal energy and enthalpy	212
7.5 Entropy	in terms of heat	213
7.6 Calcula	ting the entropy change of the Unive	erse 216
7.7 Gibbs e	energy	219
7.8 Chemic	al equilibrium	221
7.9 Finding	the standard Gibbs energy change	226
7.10 Interpre	eting the value of $\Delta_r G^\circ$	232
7.11 $\Delta_r H^\circ$ ar	nd $\Delta_r S^\circ$ for reactions not involving io	ns 234
7.12 $\Delta_r H^\circ$ and	nd $\Delta_r S^\circ$ for reactions involving ions in	n solution 237

Contents XIII

254 Moving on 1.7 Transformations within level one. 7.16 Purcher reading 255 Further reading Answers to self-test exercises 255 inswers to self-test exercises 8 Trends in bonding 257 Electronic configuration and the periodic table 257 8.1 Orbital energies and effective nuclear charges 260 12.2 8.2 Atomic sizes across the periodic table 270 2.3 8.3 Ionization energies and electron affinities 273 The energy 8.4 Trends in oxidation states across the periodic table 278 8.5 Summary of the trends in orbital energies and sizes 279 8.6 Bonding in the elements - non-metals 280 8.7 Metallic structures 287 8.8 The transition from metals to non-metals 292 8.9 295 Moving on 8.10 Further reading 295 Answers to self-test exercises Answers to self-test exercises 295 9 Bonding between the elements 297 The effect of orbital size and energy mismatch 297 9.1 The classification of compounds as ionic or covalent 302 9.2 Structural trends across the periodic table 304 9.3 Radius ratio rules 307 9.4 Compounds with lower coordination numbers 312 9.5 Moving on 316 9.6 Further reading 316 3.5 Nuclear Magnetic Resonance (NMR) Answers to self-test exercises 316 13.6 Coupling in NMR 10 Describing reactions using orbitals 319 10.1 The redictribution of cleatrone in a reaction 210

	10.1	The redistribution of electrons in a reaction	313	
	10.2	HOMO-LUMO interactions	322	
	10.3	Interactions involving nonbonding LUMOs	325	
	10.4	Interactions involving π antibonding LUMOs	329	
	10.5	Interactions involving σ antibonding LUMOs	332	
	10.6	Summary of the effects of different HOMO-LUMO interactions	335	
	10.7	The role of protonation in reactions	335	
	10.8	Intramolecular orbital interactions	338	
	10.9	Rearrangement reactions	339	
	10.10	Moving on	341	
	Answe	ers to self-test exercises	342	
1	Org	anic chemistry 1: functional groups	343	
	11.1	Functional groups	344	
	11.2	Changing functional group level	349	
	11.3	Level two to level one - carbonyl addition reactions	353	
	11.4	Transformations within functional group level two	358	

1.4 Inansiormations within functional group level two

11.5 Transformations within functional group level three

11.6 Moving down from functional group level three

385

368

Contents xiv

> 11.7 Transformations within level one Further reading Further reading 204 Answers to self-test exercises Answers to self-test exercises 12 The rates of reactions 12.1 The rate of a reaction 12.2 Rate laws 410 Temperature dependence 413 12.3 12.4 The energy barrier to reaction 414 417 12.5 Elementary reactions and reaction mechanisms Reactions in solution 418 12.6 12.7 Sequential reactions

12.8	Analysing the kinetics of complex mechanisms		42
\$25 12.9	Chain reactions		43
Furth	er reading		43
Answ	ers to self-test exercises		43
Part II	Going further	Bond	
S12 Sno	ne enect or oronal size and energy mismatch	r .e	11
10 000	Mood on extremetral biboined entrescope abnent lanutounte		11
10.1	Spectroscopy and operay loyole		44
12.2	IR enoctroscopy and energy levels		40
818 13 A	Interpreting IR spectra		40
13.5	Nuclear Magnetic Resonance (NMR)		47
13.6	Coupling in NMR		48
13.7	More complicated coupling patterns – proton NMR		49
Furth	er reading		50
Answ	vers to self-test exercises		50
14 Org	ganic chemistry 2: three-dimensional shapes		50
ese 14.1	The relationships between isomers		50
SEE 14.2	The effect of rotations about bonds		50
14.3	Isomerism in alkenes		5
200 14.4	Enantiomers and chirality		5
888 14.5	Symmetry and chirality		52
14.6	The conformation of cyclic molecules		52
14.7	Moving on		53
SAE Furth	er reading		53
Answ	vers to self-test exercises		53
15 Org	ganic chemistry 3: reactions of π systems		53
15.1	Elimination reactions – the formation of alkenes	11.2 0	54
15.2	Electrophilic addition to alkenes		5

392

405

407

408

419

15.3 Enols and enolates

15.4 The reactions of enols and enolates

Introduction to aromatic systems 15.5

Contents xv

Further reading 587 Answers to self-test exercises 587 Work of gas expansions 16 Main-group chemistry 589 Internal energy, enthalpy and heat capacity Overview 590 16.1 The Gibbs energy Key concepts in main-group chemistry 591 16.2 The mixing of ideal gases Hydrolysis of chlorides 601 16.3 610 Oxides 16.4 16.5 Brief survey of the chemistry of each group 611 623 Moving on 16.6 9.9 The temperature dependence of the Further reading 623 9.10 Determination of absolute entrop Answers to self-test exercises 623

226[\]Inswers to self-test exercises

17 Transition metals

Orbital energies and oxidation states 626 17.1 630 Complexes 17.2 632 Bonding in octahedral complexes Integrated rate laws 17.3 High-spin and low-spin octahedral complexes 639 17.4 Magnetic and spectroscopic properties of complexes 641 17.5 Consequences of the splitting of the d orbitals 643 17.6 Tetrahedral and square-planar complexes 647 17.7 Crystal-field theory 649 -unther reading 17.8 17.9 Organometallic complexes 649 Answers to self-test exercises 17.10 Aqueous chemistry and oxoanions 655 658 17.11 Moving on Electrochemical cells 658 Further reading Thermodynamic parameters Answers to self-test exercises 659 The Nernst equation and standa 18 Quantum mechanics and spectroscopy 661

18.1	The postulates of quantum mechanics	663
18.2	A free particle moving in one dimension	669
18.3	Particle in a box	672
18.4	Particle in a two-dimensional square well	681
18.5	The harmonic oscillator	683
18.6	Spectroscopy and energy levels	690
18.7	The IR spectrum of a diatomic	693
18.8	Vibrations of larger molecules	702
18.9	Raman spectroscopy	704
18.10	Summary of the features of vibrational spectroscopy	705
18.11	The rigid rotor	706
18.12	The microwave spectrum of a diatomic	708
18.13	Vibration-rotation spectrum of a diatomic	713
18.14	The hydrogen atom	1.55717
18.15	Electronic transitions	718

CHERN

12722.3 Trigonometric functions

12722.4 The exponential function

Answers to self-test exercises

xvi Contents

19 Chemical thermodynamics

19.1 The First Law

- 19.2 Work of gas expansions
- 19.3 Internal energy, enthalpy and heat capacity
- 19.4 The Gibbs energy
- 19.5 The mixing of ideal gases
- 19.6 Chemical equilibrium
- 19.7 Equilibria involving other than gases
- 19.8 Determination of the standard Gibbs energy change
- 19.9 The temperature dependence of the equilibrium constant

Key concepts in main-group

Hydrolysis of chlorides

- 19.10 Determination of absolute entropies
- Further reading

Answers to self-test exercises 760 Orbital energies and oxidation states **20 Chemical kinetics** 761 761 Measuring concentration 20.1 Bonding in octahedral complexes Integrated rate laws 769 20.2 Other methods of analysing kinetic data 777 20.3 778 Collision theory 20.4 Potential energy surfaces 783 20.5 Transition state theory 784 20.6 Crystal-field theory Further reading 789 9 Organometallic complexes 789 Answers to self-test exercises 7.10 Aqueous chemistry and oxoanions 791 Electrochemistry 21 Electrochemical cells 792 21.1 Thermodynamic parameters from cell potentials 796 21.2 The Nernst equation and standard cell potentials 799 21.3 805 21.4 The spontaneous cell reaction

cas 21.5 Summary		806
21.6 Types of half cells		807
21.7 Assessing redox stability using electrode potentials		811
21.8 The limits of stability in aqueous solution		814
21.9 Using cell potentials to determine thermodynamic param	neters	816
21.10 Oxidation state diagrams		820
21.11 Measurement of concentration		825
Further reading		829
Answers to self-test exercises	9 8.8	829
Summary of the features of vibrational spectrose6 user red rul 705		
Part III Reference material		
80% and motore material	8.12 1	
22 Dimensions, units and some key mathematical idea	aser.81	833
22.1 Dimensional analysis	18.14 7	833
81522.2 Units		839

Contents xvii

22.5 Calculus: differentiation
22.6 Calculus: integration
22.7 Differential equations
Further reading
Answers to self-test exercises

Index Orbital energies

869 877

The fundamentals

Contents

M

- Michagoni en antigo Trochanter, an dovervien
 - Electrona In anotes
 - Symmetry Sastanne astrone of an in
 - Efectrons in mobile Les d'Altérics
 - 5 Elaptron in molecular pollystomide
 - () Sansay () solars
 - This was a state and state and share the state and the state

Spring bergning the Monsene

n Constains regulling stag additely

The water of real some