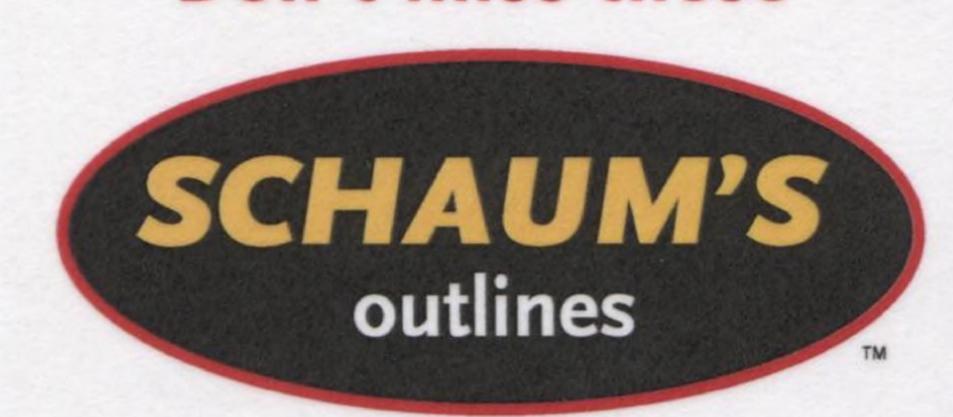
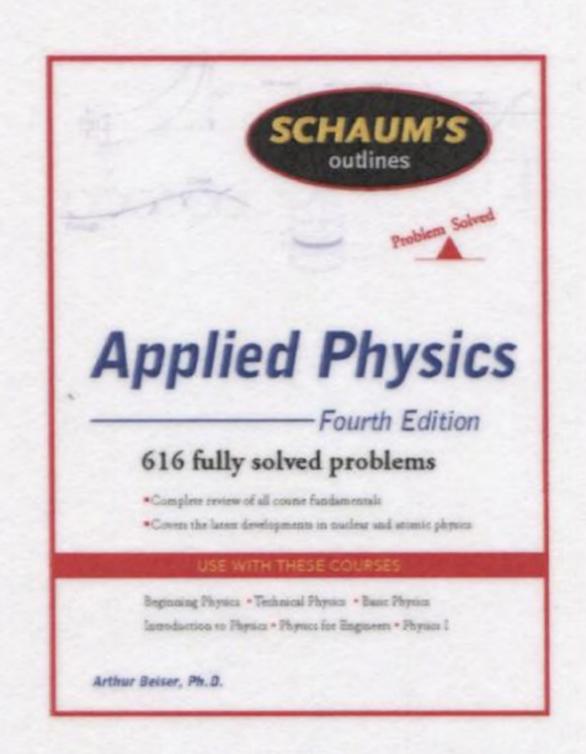
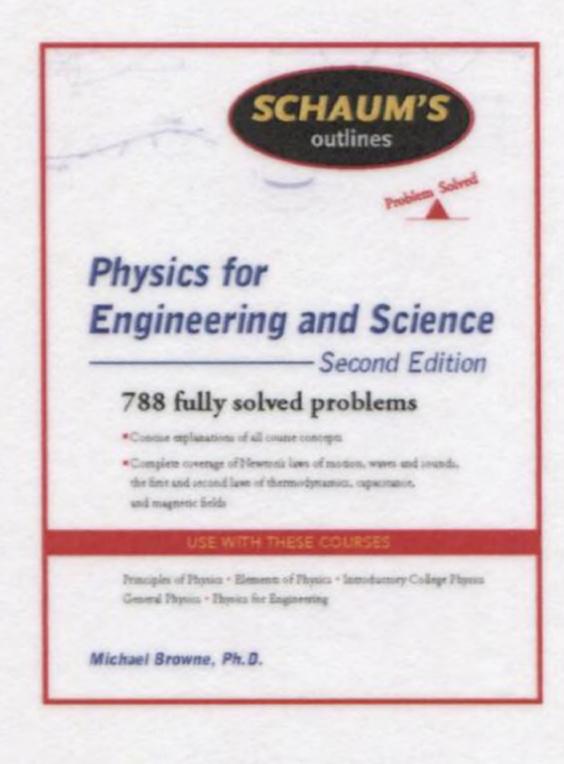
Confusing Textbooks? Missed Lectures? Tough Test Questions?


Fortunately, there's Schaum's.


More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.


This Schaum's Outline gives you

- More than 200 fully solved problems
- Concise explanations of all course concepts
- Exercises to help you test your mastery of quantum mechanics

Don't miss these

Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time—and get your best test scores!

Schaum's Outlines—Problem Solved.

CHAPTER 1	Introduction	1
	1.1 The Particle Nature of Electromagnetic Radiation1.2 Quantum Particles1.3 Wave Packets and the Uncertainty Relation	
CHAPTER 2	Mathematical Background	13
	 2.1 The Complex Field C 2.2 Vector Spaces over C 2.3 Linear Operators and Matrices 2.4 Eigenvectors and Eigenvalues 2.5 Fourier Series and the Fourier Transform 2.6 The Dirac Delta Function 	
CHAPTER 3	The Schrödinger Equation and Its Applications	25
	3.1 Wavefunctions of a Single Particle 3.2 The Schrödinger Equation 3.3 Particle in a Time-Independent Potential 3.4 Scalar Product of Wavefunctions: Operators 3.5 Probability Density and Probability Current	
CHAPTER 4	The Foundations of Quantum Mechanics	61
	 4.1 Introduction 4.2 Postulates in Quantum Mechanics 4.3 Mean Value and Root-Mean-Square Deviation 4.4 Commuting Observables 4.5 Function of an Operator 4.6 Hermitian Conjugation 4.7 Discrete and Continuous State Spaces 4.8 Representations 4.9 The Time Evolution 4.10 Uncertainty Relations 4.11 The Schrödinger and Heisenberg Pictures 	
	4.10 Checitality Relations 4.11 The Schrödinger and Heisenberg Fictures	
CHAPTER 5	Harmonic Oscillator	98
	5.1 Introduction 5.2 The Hermite Polynomials 5.3 Two- and Three-Dimensional Harmonic Oscillators 5.4 Operator Methods for a Harmonic Oscillator	
	15.1 Cross Section 15.2 Stationary Scattering States 15.3	
CHAPIER 6	Angular Momentum	117
	 6.1 Introduction 6.2 Commutation Relations 6.3 Lowering and Raising Operators 6.4 Algebra of Angular Momentum 6.5 Differential Representations 6.6 Matrix Representation of an Angular Momentum 6.7 Spherical Symmetry Potentials 6.8 Angular Momentum and Rotations 	
CHAPTER 7	Dependent Penningtion Theory 16.3 Transition Rate 16.4 Mail Transitions 16.5 Secondadone Entrancement and Ministern	145
	 7.1 Definitions 7.2 Spin 1/2 7.3 Pauli Matrices 7.4 Lowering and Raising Operators 7.5 Rotations in the Spin Space 7.6 Interaction with a Magnetic Field 	

CHAPTER 8	Hydrogen-like Atoms	164
	 8.1 A Particle in a Central Potential 8.2 Two Interacting Particles 8.3 The Hydrogen Atom 8.4 Energy Levels of the Hydrogen Atom 8.5 Mean Value Expressions 8.6 Hydrogen-like Atoms 	
CHAPTER 9	Particle Motion in an Electromagnetic Field	179
	 9.1 The Electromagnetic Field and Its Associated Potentials 9.2 The Hamiltonian of a Particle in the Electromagnetic Field 9.3 Probability Density and Probability Current 9.4 The Magnetic Moment 9.5 Units 	
	Solution Methods in Quantum Mechanics—Part A	204
	10.1 Time-Independent Perturbation Theory 10.2 Perturbation of a Non-degenerate Level 10.3 Perturbation of a Degenerate State 10.4 Time-Dependent Perturbation Theory	
CHAPTER 11	Solution Methods in Quantum Mechanics—Part B	232
	11.1 The Variational Method 11.2 Semiclassical Approximation (The WKB Approximation)	
CHAPTER 12	Numerical Methods in Quantum Mechanics	249
	12.1 Numerical Quadrature 12.2 Roots 12.3 Integration of Ordinary Differential Equations	
CHAPTER 13	Identical Particles	264
	13.1 Introduction 13.2 Permutations and Symmetries of Wavefunctions13.3 Bosons and Fermions	
	Addition of Angular Momenta	273
	14.1 Introduction 14.2 $\{\hat{\mathbf{J}}_1^2, \hat{\mathbf{J}}_2^2, \hat{\mathbf{J}}^2, \hat{\mathbf{J}}_z^2\}$ Basis 14.3 Clebsch–Gordan Coefficients	
	Scattering Theory	296
	15.1 Cross Section 15.2 Stationary Scattering States 15.3 Born Approximation 15.4 Partial Wave Expansions 15.5 Scattering of Identical Particles	
CHAPTER 16	Semiclassical Treatment of Radiation	330
	16.1 The Interaction of Radiation with Atomic Systems 16.2 Time- Dependent Perturbation Theory 16.3 Transition Rate 16.4 Multipole Transitions 16.5 Spontaneous Emission	

Mathematical Appendix

A.1 Fourier Series and Fourier Transform A.2 The Dirac δ-Function
 A.3 Hermite Polynomials A.4 Legendre Polynomials A.5 Associated
 Legendre Functions A.6 Spherical Harmonics A.7 Associated Laguerre
 Polynomials A.8 Spherical Bessel Functions

Index

355