Contents

Pro	tein Structure		Protein molecules are organized in a structural	
Pai	rt 1 Basic Structural Principles	1	hierarchy	26
1.	The Building Blocks	3	Large polypeptide chains fold into several	
	Proteins are polypeptide chains	4	domains	26
	The genetic code specifies 20 different amino		Domains are built from structural motifs	27
	acid side chains	4	Simple motifs combine to form complex motifs	28
	Cysteines can form disulfide bridges	5	Protein structures can be divided into three	
	Peptide units are building blocks of protein		main classes	28
	structures	8	Conclusion	29
	Glycine residues can adopt many different		Selected Readings	30
	conformations	8		
	Conclusion	9	3. Alpha-Domain Structures	33
	Selected Readings	10	Two adjacent α helices are usually antiparallel	33
			The four-helix bundle is a common domain	
2.	Motifs of Protein Structure	11	structure in a proteins	33
	Few general principles emerged from the first		The active site is between the α helices in	
	protein structure	11	four-helix bundle structures	35
	The interior of proteins is hydrophobic	12	The globin fold is present in myoglobin and	
	The alpha (a) helix is an important element of		hemoglobin	35
	secondary structure	12	Geometric aspects determine α-helix packing	36
	The α helix has a dipole moment	13	Ridges of one α helix fit into grooves of an	
	Some amino acids are preferred in α helices	13	adjacent helix	36
	Beta (β) sheets usually have their beta (β) strands		The globin fold has been preserved during	
	either parallel or antiparallel	15	evolution	37
	Loop regions are at the surface of protein		The hydrophobic interior is preserved	38
	molecules	18	Helix movements accommodate interior	
	Schematic pictures of proteins highlight		side-chain mutations	38
	secondary structure	19	Sickle-cell hemoglobin confers resistance to	
	Topology diagrams are useful for classification		malaria	39
	of protein structures	20	Conclusion	40
	Secondary structure elements are connected into		Selected Readings	41
	simple motifs	21		
	The hairpin β motif occurs frequently in protein		4. Alpha/Beta Structures	43
	structures	23	Parallel β strands are arranged in barrels or sheets	43
	The Greek key motif is found in antiparallel		α/β barrels occur in many different enzymes	44
	β sheets	24	Branched hydrophobic side chains dominate	
4	The β - α - β motif contains two parallel β strands	24	the core of α/β barrels	45

	Pyruvate kinase contains several domains, one			The receptor binding site is formed by the jelly	
	of which is an α/β barrel	46		roll domain	74
	Double barrels have occurred by gene fusion	47		Hemagglutinin acts as a membrane fusogen	74
	The active site is formed by loops at one end of			Conclusion	74
	the α/β barrel	47		Selected Readings	76
	Stability and function are separated	48			
	Was there an ancestral barrel?	48	6.	DNA Structures	79
	α/β twisted open-sheet structures contain			The DNA double helix is different in A- and	
	α helices on both sides of the β sheet	49		B-DNA	79
	Open β-sheet structures have different topologies	49		The DNA helix has major and minor grooves	80
	The position of the active sites can be predicted			Z-DNA forms a zigzag pattern	81
	in α/β structures	51		B-DNA is the preferred conformation in vivo	81
	Tyrosyl-tRNA synthetase has two different			Specific base sequences can be recognized in	
	domains $(\alpha/\beta + \alpha)$	51		B-DNA	82
	Carboxypeptidase is an α/β protein with mixed			Conclusion	83
	βsheet	53		Selected Readings	84
	Arabinose-binding protein has two similar				
	α/β domains	54	Par	t 2 Structure, Function, and Engineering	85
	Conclusion	56		DNA Recognition by Proteins with the	ý.
	Selected Readings	56		Helix-Turn-Helix Motif	87
				A molecular mechanism for gene control is	
5.	Antiparallel Beta Structures	59		emerging	87
	Up-and-down barrels have a simple topology	60		Repressor and Cro proteins operate a procaryotic	
	Retinol-binding protein folds into an			genetic switch region	88
	up-and-down β barrel	60		The x-ray structure of the complete lambda Cro	_
	Retinol is bound inside the β barrel	61		protein is known	89
	Amino acid sequence reflects β structure	62		The x-ray structure of the DNA-binding domain	
	The retinol-binding protein belongs to a			of the lambda repressor is known	90
	superfamily of protein structures	62		Both lambda Cro and repressor proteins have a	
	Retinol binding in humans and biliverdin			specific DNA-binding motif	91
	binding in insects show evolutionary			Model building predicts Cro-DNA interactions	92
	relationship	62		Genetic studies agree with the structural model	93
	Structure suggests function for β-lactoglobulin	63		The x-ray structure of DNA complexes with 434	
	Neuraminidase folds into up-and-down β sheets	64	4	Cro and repressor revealed novel features of	
	Folding motifs form a superbarrel in			protein DNA interactions	94
	neuraminidase	64		The structures of 434 Cro and 434 repressor-	
	The active site is at one end of the superbarrel	65		binding domains are very similar	95
	Greek key motifs occur frequently in the			The B-DNA conformation is distorted in the	
	antiparallel β structures	66		complexes	95
	The γ-crystallin molecule has two domains	67		Conformational changes of DNA are important	
	The domain structure has a simple topology	68		for differential repressor binding	96
	Two Greek key motifs form the domain	68		Sequence-specific protein–DNA interactions	
	The two domains have identical topology	69		recognize operator regions	96
	The two domains have similar structures	69		Nonspecific protein–DNA interactions determine	
	The Greek key motifs are evolutionarily related			DNA conformation	97
	in γ crystallin	70		Local DNA structure modulates repressor binding	98
	Intron positions separate the four Greek key			The essence of phage repressor and Cro	99
	motifs	70		Amino acid sequence relations identify	
	The Greek key motifs can form jelly roll barrels	70		helix-turn-helix motifs	99
	The jelly roll motif is wrapped around a barrel	71		Phage Cro and repressor proteins are	
	The jelly roll barrel is usually divided into two	, _		evolutionarily related	100
	sheets	71		Cro and repressor have homologous sequences	
	A folding scheme has been suggested for the	, _		but partly different structures	101
	jelly roll barrel structure	72		Sequence comparison using strong stereochemical	
	The hemagglutinin polypeptide chain folds			constraints identifies helix-turn-helix motifs	
	into a complex structure	72		Sequence comparisons without using	
	The subunit structure is divided into a stem and			stereochemical constraints do not identify	
	a tip	73		helix-turn-helix motifs unambiguously	103
	The hemagglutinin molecule is trimeric	73		DNA binding is regulated by allosteric control	104
		17 97 77			

	The trp repressor forms a helix-turn-helix motif	104	NAD binds in a similar way to each domain	146
	A conformational change provides the molecular		Hydride transfer to NAD is stereospecific	147
	mechanism of the functional switch	105	Are the NAD-binding domains evolutionarily	
	CAP is a positive control element	106	related?	148
	The polypeptide chain of CAP folds into two		The NAD-binding motif can be predicted from	
	domains	106	amino acid sequence	148
	A molecular mechanism has been suggested for		FAD- and NAD-binding domains have essential	
	the switch in CAP	107	similarities	151
	Met and arc repressors belong to a family of		Gene fusion has occurred between an	
	β-sheet DNA-binding proteins	108	FMN-binding α/β barrel and a cytochrome	152
	Conclusion	109	The cytochrome-b ₂ domain is homologous to	1
3	Selected Readinds	110	mammalian cytochrome b ₅	153
		V	The FMN-binding domain is an α/β barrel	154
8.	Structural Motifs of Eucaryotic		Hexokinase validates the theory of induced fit	155
	Transcription Factors	113	Conclusion	157
	Transcription factors have two functionally		Selected Readings	158
	different domains	114		
-	Three different families of zinc fingers have		11. The Structure of Spherical Viruses	161
	been observed	115	The protein shells of spherical viruses have	
	The classic zinc finger has two cysteine and		icosahedral symmetry	162
	two histidine ligands bound to zinc	116	The icosahedron has high symmetry	163
	Two zinc fingers in the glucocorticoid receptor		The simplest virus has a shell of 60 protein	
	form one DNA-binding domain	118	subunits	164
	Yeast transcription factor Gal 4 contains a		Complex spherical viruses have more than one	
	binuclear zinc cluster in its DNA-binding		polypeptide chain in the asymmetric unit	165
	domain	119	Structural versatility gives quasi-equivalent	100
	Retroviral zinc fingers have one histidine and		packing in $T = 3$ plant viruses	166
	three cysteine residues bound to zinc	120	The protein capsid of picorna viruses contains	100
	Monomers of homeodomains bind to DNA		four polypeptide chains	167
	through a helix-turn-helix motif	121	There are four different structural proteins in	10.
	Leucine zippers provide dimerization interactions		picorna viruses	168
	for some eucaryotic DNA-binding proteins	124	The arrangement of subunits in the shell of	100
	Conclusion	126	picorna viruses is similar to that of $T = 3$	
	Selected Readings	127	plant viruses	168
			The coat proteins of spherical plant and animal	100
9.	DNA Polymerase Is a Multifunctional		viruses have similar structure, the jelly roll	
	Enzyme	129	barrel structure, indicating an evolutionary	
	The Klenow fragment of <i>E. coli</i> DNA polymerase I		relationship	169
	(Pol I) can be crystallized	131	Drugs against common cold may be designed	
	The Klenow fragment has two separate domains	131	from the structure of rhinovirus	171
	The large domain has a large binding cleft	132	Bacteriophage MS2 has a different subunit	
	The large domain has polymerase activity	132	structure	173
	The small domain has an α/β structure	133	Both the core and the spikes of enveloped	
	The small domain has 3'-5' exonuclease activity	134	viruses have icosahedral symmetry	174
	How the processivity and fidelity of DNA		The subunits in polyoma virus have	
	synthesis is achieved	135	nonequivalent environments	174
	Comparison with other polymerases reveals	200	Conclusion	175
	evolutionary relationships	136	Selected Readings	176
	DNA-binding proteins are constructed from	100		1,0
	modules	137	12. Recognition of Foreign Molecules by the	
	Conclusion	138	Immune System	179
	Selected Readings	139	The polypeptide chains of antibodies are divided	1,,,
	-		into domains	181
0.	Enzymes That Bind Nucleotides	141	Antibody diversity is generated by several	
•	The structures of several NAD-dependent		different mechanisms	182
	dehydrogenases are known	142	All immunoglobulin domains have similar	
	The dehydrogenase polypeptide chains are		three-dimensional structure	183
	modular	143	The immunoglobulin fold is best described as	100
4	The NAD-binding domains have similar		two antiparallel β sheets packed tightly	
		144	against each other	101
	structures	144	against each other	184

	The hypervariable regions are clustered in loop		The receptors for insulin and epidermal growth	
	regions at one end of the variable domain	185	factor are evolutionarily related	220
	The antigen binding site is formed by close		The PDGF receptor is also a protein tyrosine	
	association of the hypervariable regions		kinase receptor	221
	from both heavy and light chains	186	Similar mechanisms are used for signal	
	The antigen binding site binds haptens in		transduction across the membrane	221
	crevices and protein antigens through large		G proteins are molecular amplifiers	222
	flat surfaces	188	G proteins are homologous in sequence to	
	The structure of an idiotype-anti-idiotype		elongation factor Tu and cH-ras p21	223
	complex has been determined	192	Point mutation generates transforming ras	
	An IgG molecule has several degrees of		oncogenes	223
	conformational flexibility	193	A deletion mutant gene is used to produce	
	The structure of a human MHC molecule has		truncated p21	224
	provided insights into the molecular		The crystal structures of p21 and EF-Tu have	
	mechanism of T-cell activation	194	the same fold of their polypeptide chains	224
	Recognition of antigen is different in MHC		Regions of conserved amino acid sequence	221
	compared to immunoglobulins	194	bind GTP	225
	Conclusion	197	Oncogenic activation is caused by mutations in	223
	Selected Readings	199		226
	Selected Readings	199	the GTP-binding loops	226
13	Manual Paradaina	201	The molecular basis of autophosphorylation of	226
13.	Membrane Proteins	201	viral p21	226
	Membrane proteins are difficult to crystallize	202	Protein-protein interactions can modulate the	
	Bacteriorhodopsin contains seven	200	GTP-binding and hydrolysis properties of	
	transmembrane α helices	203	ras p21	227
	The bacterial photosynthetic reaction center is		Receptors that utilize G proteins contain seven	
	built up from four different polypeptide		transmembrane helices	227
	chains and many pigments	203	Conclusion	228
	The L, M, and H subunits have transmembrane		Selected Readings	229
	α helices	205		
	The photosynthetic pigments are bound to the	15.	An Example of Enzyme Catalysis:	
	L and M subunits	206	Serine Proteinases	231
	Reaction centers convert light energy into		Proteinases form four functional families	231
	electrical energy by electron flow through		The catalytic properties of enzymes are reflected	
	the membrane	208	in $K_{\rm m}$ and $k_{\rm cat}$ values	232
	The reaction center is a quantum-mechanical		Enzymes decrease the activation energy of	
	tunneling device	209	chemical reactions	232
	Transmembrane α helices can be predicted		Serine proteinases cleave peptide bonds by	
	from the amino acid sequence	209	forming tetrahedral transition states	234
	Hydrophobicity scales measure the degree of		Four essential structural features are required for	201
	hydrophobicity of different amino acid side		the catalytic action of serine proteinases	235
	chains	210	Convergent evolution has produced two different	and the same
	Hydropathy plots identify transmembrane helices	Grand Co.	serine proteinases with similar catalytic	
	Reaction-center hydropathy plots agree with	210	mechanisms	236
	crystal structural data	211	The chymotrypsin structure has two antiparallel	230
	Membrane lipids have no specific interaction	211	β-barrel domains	236
	with protein transmembrane α helices	212	The active site is formed by two loop regions	230
	Structural rearrangements convert a water-soluble		from each domain	227
				237
	protein to a membrane-bound form	212	Did the chymotrypsin molecule evolve by gene	220
	Conclusion	213	duplication?	238
	Selected Readings	214	Different side chains in the substrate specificity	•
		01=	pocket confer preferential cleavage	238
14.	Receptor Families	217	Engineered mutations in the substrate specificity	
	Tyrosine kinase growth factor receptors and		pocket change the rate of catalysis	239
	G-protein linked receptors form two		The Asp 189-Lys mutant in trypsin has	Sept at a f
	different receptor families	.217	unexpected changes in substrate specificity	241
	The epidermal growth factor (EGF) receptor		The structure of the serine proteinase subtilisin	
	folds into distinct domains	218	is of the α/β type	241
	The <i>v-erb B</i> oncogene is a coopted EGF receptor		The active sites of subtilisin and chymotrypsin	
	gene	219	are similar	241

	A structural anomaly in subtilisin has functional		Hydrogen bonds give small energy contributions	
	consequences	243	to ligand binding	261
	Transition-state stabilization in subtilisin is		Hydrogen bonds involving charged groups	
	dissected by protein engineering	243	contribute more to specificity than those	
	Catalysis occurs without a catalytic triad	243	between uncharged groups	262
	Substrate molecules provide catalytic groups in		Circularly permuted α/β barrels fold correctly	263
	substrate-assisted catalysis	243	Protein structures can be designed from first	
	Conclusion	245	principles	265
	Selected Readings	245	Conclusion	266
			Selected Readings	267
•	Prediction, Engineering, and Design of			1
	Protein Structures	247	17. Determination of Protein Structures	269
	Prediction of protein structure from sequence is		Several different techniques are used to study	
	an unsolved problem	248	the structure of protein molecules	269
	Many different amino acid sequences give similar		Protein crystals are difficult to grow	270
	three-dimensional structures	248	X-ray sources are either monochromatic or	
	Amino acid sequence homology implies		polychromatic	272
	similarity in structure and functions	249	X-ray data are recorded either on films or by	
	Homologous proteins have conserved structural		electronic detectors	273
	cores and variable loop regions	249	The rules for diffraction are given by Bragg's law	273
	Knowledge of secondary structure is necessary		Phase determination is the major crystallographic	
	for prediction of tertiary structure	251	problem	274
	Prediction methods for secondary structure		Building a model involves subjective	
	have low accuracy	251	interpretation of the data	276
	The tertiary fold of an enzyme has been		Errors in the initial model are removed by	
	successfully predicted	252	refinement	277
	Folded and unfolded proteins are almost equally		Amino acid sequence is essential for x-ray	
	stable	256	structure determination	278
	Proteins can be made more stable by		Recent technological advances have greatly	
	engineering	257	influenced protein crystallography	279
	Disulfide bridges increase protein stability	257	NMR methods use the magnetic properties of	
	Glycine and proline have opposite effects on		atomic nuclei	280
	stability	259	Two-dimensional NMR spectra of proteins are	
	Stabilizing the dipoles of α helices increases		interpreted by the method of sequential	
	stability	259	assignment	281
	Mutants that fill cavities in hydrophobic cores		Distance constraints are used to derive possible	
	do not stabilize T4 lysozyme	260	1	283
	Binding energy in molecular recognition and		Biochemical studies and molecular structure give	
	specificity has been analyzed by protein		1	284
	engineering	260		284
			Selected Readings	285