A graduate-level textbook on the astrophysics of binary star systems and their evolution

Physics of Binary Star Evolution is an up-to-date textbook on the astrophysics and evolution of binary star systems. Theoretical astrophysicists Thomas Tauris and Edward P.J. van den Heuvel cover a wide range of phenomena and processes, including mass transfer and ejection, common envelopes, novae and supernovae, X-ray binaries, millisecond radio pulsars, and gravitational wave (GW) sources, and their links to stellar evolution.

The authors walk through the observed properties and evolution of different types of binaries, with special emphasis on those containing compact objects (neutron stars, black holes, and white dwarfs). Attention is given to the formation mechanisms of GW sources merging double neutron stars and black holes as well as ultra-compact GW binaries hosting white dwarfs—and to the progenitors of these sources and how they are observed with radio telescopes, X-ray satellites, and GW detectors (LIGO, Virgo, KAGRA, Einstein Telescope, Cosmic Explorer, and LISA). Supported by illustrations, equations, and exercises, Physics of Binary Star Evolution combines theory and observations to guide readers through the wonders of a field that will play a central role in modern astrophysics for decades to come.

- 465 equations, 47 tables, and 350+ figures
- More than 80 exercises (analytical, numerical, and computational)
- Over 2,500 extensive, up-to-date references

THOMAS M. TAURIS is professor of theoretical astrophysics at Aalborg University.

EDWARD P. J. VAN DEN HEUVEL is emeritus professor of astrophysics at the University of Amsterdam and the Vrije Universiteit, Brussels. His books include Accretion-Driven Stellar X-ray Sources, Interacting Binaries, and X-ray Binaries.

- "Physics of Binary Star Evolution contains a wealth of information not gathered together anyplace else."
- Virginia Trimble, former president, Commission on Binary and Multiple Star Systems of the International Astronomical Union

"Tauris and van den Heuvel draw on their decades of innovation and experience in binary star astrophysics to provide a definitive book on the subject. *Physics of Binary Star Evolution* starts with essentials for every astronomy student, while later chapters meet the needs of both beginning and advanced researchers. It features numerous exercises suitable for both the classroom and self-study."

-E. Sterl Phinney, California Institute of Technology

"Stellar astronomy is undergoing a renaissance with binary stars leading the way. This book will become the standard book for graduate classes and at the same time will serve as the gateway for those interested in binary star research."

-Shri Kulkarni, California Institute of Technology

"This is the advanced-level textbook that I have long been waiting for, written by absolute authorities in the field. I certainly recommend *Physics of Binary Star Evolution* to students and anyone who wishes to familiarize themselves with the exciting phenomena of binary systems."

 Selma E. de Mink, Max Planck Institute for Astrophysics

"This is a beautifully presented guide to the evolution of binary stars. Two giants of the field take us on an exciting journey through the theoretical and observational landscape, spiced up with tidbits of history and accompanied by illustrations and problems. The emphasis on massive binaries, including neutron stars and black holes, will be particularly useful to newcomers to binary evolution arriving from emerging fields such as gravitational-wave astronomy, while old hands will appreciate the authors' unique perspectives."

-Ilya Mandel, Monash University

Cover image: An artist's impression of gravitational waves generated by binary neutron stars. R. Hurt / Caltech / MIT / LIGO Laboratory Cover design: Wanda España

Preface		xi	
1	Intro	duction: The Role of Binary Star Evolution in Astrophysics	1
2	Histo	rical Notes on Binary Star Discoveries	10
	2.1	Visual Binaries and the Universal Validity of the Laws of Physics	10
	2.2	Astrometric Binaries	11
	2.3	Spectroscopic Binaries	14
	2.4	Eclipsing Binaries	15
	2.5	The Discovery of the Binary Nature of Novae and Other Cataclysmic	
		Variables	17
	2.6	The Discovery of the Binary Nature of the Brightest X-ray Sources	
		in the Sky	20
	2.7	Centaurus X-3: Discovery of the First Neutron Star X-ray Binary	21
	2.8	Cygnus X-1: Discovery of the First Black Hole X-ray Binary	22
	2.9	The Discovery of the Existence of Double NSs and Double BHs	25
	2.10	The Discovery of Millisecond Radio Pulsars: Remnants of LMXBs	26
	2.11	Type Ia, Ib, and Ic SNe: Results of the Evolution of Binary Systems	27
	2.12	Binary Nature of Blue Stragglers, Barium Stars, and Peculiar	
		Post-AGB Stars	29
		Exercises	31
3	Orbit	s and Masses of Spectroscopic Binaries	33
	3.1	Some Basics about Binary Orbits	33
	3.2	Orbit Determination	36
	3.3	Determination of Stellar Masses	41
	3.4	Masses of Unevolved Main-sequence Stars	42
	3.5	The Most Massive Stars	44
	3.6	Falsification of Radial Velocity Curves	46
	3.7	The Incidence of Interacting Binaries and Their Orbital Distribu-	
		tions and Masses	51
		Exercises	57
4	Mass	Transfer and Mass Loss in Binary Systems	59
	4.1	Roche Equipotentials	59
	4.2	Limitations in the Concept of Roche Equipotentials	63

	4.3	Orbital Changes due to Mass Transfer and Mass Loss	
		in Binary Systems	65
	4.4	Observational Examples	83
	4.5	Basic Physics of Mass Transfer via L_1	88
	4.6	Accretion Disks	98
	4.7	Tidal Evolution in Binary Systems	109
	4.8	Common Envelopes	115
	4.9	Eddington Accretion Limit	131
		Exercises	134
5		erved Binaries with Non-degenerate or White Dwarf	928 197
	Com	ponents	139
	5.1	Introduction	139
	5.2	Unevolved Systems	142
	5.3	Evolved Systems with Non-degenerative Components	143
	5.4	Systems with One or Two White Dwarfs	152
		Exercises	167
6	Obse	erved Binaries with Accreting Neutron Stars and Black Holes:	
	X-ra	y Binaries	168
	6.1	Discovery of NS and BH Character of Bright Galactic	
		X-ray Sources	168
	6.2	Two Types of Persistent Strong X-ray Sources:	
		HMXBs and LMXBs	176
	6.3	HMXBs and LMXBs vs. IMXBs	180
	6.4	Determinations of NS Masses in X-ray Binaries	188
	6.5	BH X-ray Binaries	191
	6.6	Binaries and Triples with Non-interacting BHs	206
		Exercises	209
7	Obse	erved Properties of X-ray Binaries in More Detail	213
	7.1	High-mass X-ray Binaries in More Detail	213
	7.2	Stellar Wind Accretion in More Detail	227
	7.3	Spin Evolution of Neutron Stars	232
	7.4	The Corbet Diagram for Pulsating HMXBs	243
	7.5	Orbital Changes due to Torques by Stellar Wind Accretion,	
		Mass Loss, and Tides	245
	7.6	Measuring BH Spins in X-ray Binaries	245
	7.7	Ultra-luminous X-ray Binaries	252
	7.8	Low-mass X-ray Binaries in More Detail	258
		Exercises	270
8	Evol	ution of Single Stars	271
	8.1	Overview of the Evolution of Single Stars	271
	8.2	Final Evolution and Core Collapse of Stars More Massive	
		than 8 Mo	299

	8.3	Evolution of Helium Stars	315
		Exercises	325
9	Stellar	Evolution in Binaries	326
	9.1	Historical Introduction: Importance of Mass Transfer	326
	9.2	Evolution of the Stellar Radius and Cases of Mass Transfer	327
	9.3	RLO: Reasons for Large-scale Mass Transfer and Conditions	
		for Stability of the Transfer	334
	9.4	Results of Calculations of Binary Evolution with	
		Conservative Mass Transfer	340
	9.5	Examples of Non-conservative Mass Transfer	353
	9.6	Comparison of Case B Results with Some Observed Types	
		of Systems	360
	9.7	Differences in Final Remnants of Mass-transfer Binaries and	
		Single Stars	366
	9.8	Slowly Rotating Magnetic Main-sequence Stars: The Products	
		of Mergers?	371
		Exercises	374
10	Forms	tion and Evolution of High-mass X-ray Binaries	376
10	10.1	Introduction: HMXBs are Normal Products of Massive Binary	370
	10.1	Star Evolution	376
	10.2	Formation of Supergiant HMXBs	376
		Formation of Supergrant Thyl XBs Formation of B-emission (Be)/X-ray Binaries	379
	10.3	WR Binaries, HMXBs, and Runaway Stars	386
	10.4	Stability of Mass Transfer in HMXBs	393
	10.5	The X-ray Lifetime and Formation Rate of the Blue	373
	10.6	Supergiant HMXBs	395
	10.7	Highly Non-conservative Evolution and Formation of Very	373
	10.7	Close Relativistic Binaries	403
	10.8	Formation Models of HMXBs Different from Conservative	403
	10.6	Case B Evolution	408
	10.9	The Lower Mass Limit of Binary Stars for Terminating	700
	10.9	as a BH	411
	10 10	Final Evolution of BH-HMXBs: Two Formation Channels for	711
	10.10	Double BHs	414
	10 11	Final Evolution of Wide-orbit BH-HMXBs via CE Evolution	415
		Final Evolution of Wide-orbit BH-HMXBs via CE Evolution Final Evolution of Relatively Close-orbit BH-HMXBs via	713
	10.12	Stable RLO	419
	10 12	Refinement of the DNS Formation Model: Case BB RLO in	717
	10.13		423
		Post-HMXB Systems Exercises	431
		LACICISCS	731
11	Forma	ation and Evolution of Low-mass X-ray Binaries	433
73.0	11.1	Origin of LMXBs with Neutron Stars	433
		Origin of LMXBs with Black Holes	449

	11.3	Mechanisms Driving Mass Transfer in Close-orbit LMXBs	
		and CVs	450
	11.4	Formation and Evolution of UCXBs	464
	11.5	Mechanisms Driving Mass Transfer in Wide-orbit LMXBs and	
		Symbiotic Binaries	470
	11.6	Stability of Mass Transfer in Intermediate-Mass and High-Mass	
		X-ray Binaries	475
		Exercises	477
12	Dyna	mical Formation of Compact Star Binaries in Dense	
	Star (Clusters	480
	12.1	Introduction	480
	12.2	Observed Compact Object Binaries in Globular Clusters:	
		X-ray Binaries and Radio Pulsars	482
	12.3	Possible Formation Processes of NS Binaries in Globular Clusters	483
	12.4	Dynamical Formation of Double BHs	489
	12.5	Compact Objects in Globular Clusters Constrain Birth Kicks	492
13	Super	rnovae in Binaries	495
	13.1	Introduction	495
	13.2	Supernovae of Type Ia	498
	13.3	Stripped-Envelope Core-Collapse SNe	513
	13.4	Electron-capture SNe in Single and Binary Stars	518
	13.5	Ultra-Stripped Supernovae	523
	13.6	Comparison between Theory and Observations of SNe Ib and Ic	529
	13.7	Supernova Kicks	531
	13.8	Kinematic Impacts on Post-SN Binaries	541
		Exercises	556
14	Binar	ry and Millisecond Pulsars	560
	14.1	Introduction to Radio Pulsars	561
	14.2	To Be Recycled or Not to Be Recycled	571
	14.3	MSPs with He WD or Sub-stellar	
		Dwarf Companions–Evolution from LMXBs	578
	14.4	MSPs with CO WD Companions-Evolution from IMXBs	591
	14.5	Formation of MSPs via Accretion-induced	
		Collapse	595
	14.6	Recycling of Pulsars	597
	14.7	Masses of Binary Neutron Stars	618
	14.8	Pulsar Kicks	635
	14.9	Formation of Double Neutron Star Systems	637
		Exercises	648
15	Grav	itational Waves from Binary Compact Objects	652
	15.1	The Evidence of GWs prior to LIGO	655
	15.2	GW Luminosity and Merger Timescale	658

	15.3	Observations of GW Signals from Binaries	661
	15.4	Galactic Merger Rates of Neutron Star/Black Hole Binaries	664
	15.5	Formation of Double Black Hole Binaries	667
	15.6	Properties of GW Sources Detected so Far	678
	15.7	Empirical Merger Rates	694
	15.8	BH Spins-Expectations and Observations	696
	15.9	Anticipated Other Sources to be Detected in the GW Era	706
	15.10	GW Follow-up Multimessenger Astronomy	712
	15.11	Cosmological Implications	718
	15.12	LISA Sources	718
	15.13	LISA Sensitivity Curve and Source Strain	730
		Exercises	736
16	Binar	y Population Synthesis and Statistics	739
	16.1	Introduction	739
	16.2	Methodology of Population Synthesis	741
	16.3	Empirical vs. Binary Population Synthesis-Based	
		Estimates of Double Compact Object Merger Rates	747
	16.4	Some History of Early Binary Population Synthesis:	
		Evolution of Open Star Clusters with Binaries	753
Ack	15.5 Formation of Double Black Hole Binaries 15.6 Properties of GW Sources Detected so Far 15.7 Empirical Merger Rates 15.8 BH Spins–Expectations and Observations 15.9 Anticipated Other Sources to be Detected in the GW Era 15.10 GW Follow-up Multimessenger Astronomy 15.11 Cosmological Implications 15.12 LISA Sources 15.13 LISA Sensitivity Curve and Source Strain Exercises 6 Binary Population Synthesis and Statistics 16.1 Introduction 16.2 Methodology of Population Synthesis 16.3 Empirical vs. Binary Population Synthesis-Based Estimates of Double Compact Object Merger Rates 16.4 Some History of Early Binary Population Synthesis: Evolution of Open Star Clusters with Binaries	761	
Answers to Exercises		765	
List	of Acr	onyms	767
Ref	erences		771
Ind	ex		843