

Contents

Contributors xv Introduction: Bark beetles, management, and climate change xix Acknowledgments xxvii

the selent same and the brid brid which an area and the

Insect distributions and novel hosts PARTI

1. Climate change and invasions by nonnative bark and ambrosia beetles

Deepa S. Pureswaran, Nicolas Meurisse, Davide Rassati, Andrew M. Liebhold, and Massimo Faccoli

- **1** Introduction
- 2 Key terms and concepts
- 3 Factors predisposing bark and ambrosia beetles as invaders
- 4 Transportation and arrival
- 5 Establishment and population growth
- 6 Spread of established populations

3

9

12

14

	7 Impact of climate change on fungal associates	16
	8 Consequences of extreme weather events on invasions	17
	9 Conclusions and future directions	19
	Acknowledgments	21
	References	21
2.	Complexities in predicting mountain pine beetle and spruce beetle response to climate change	31
	Barbara J. Bentz, E. Matthew Hansen, Marianne Davenport, and	
	David Soderberg	
	1 Introduction	31

vii

viii Contents

2 Development rates and thresholds	35
3 Diapause	36
4 Cold hardening	41
5 Potential climate change effects on population persistence and	
expansion	42
6 Management implications of climate change-affected	
population dynamics	46
7 Conclusions	47
Acknowledgments	47
	 3 Diapause 4 Cold hardening 5 Potential climate change effects on population persistence and expansion 6 Management implications of climate change-affected population dynamics 7 Conclusions

- References
- Responses and modeling of southern pine beetle and its host pines to climate change
 Carissa F. Aoki, Holly L. Munro, and Kamal J.K. Gandhi
 1 Introduction
 - 2 Factors influencing the geographic range of southern pine beetle
 - 3 Management and monitoring data
 - 4 Climate change, range expansion, and predictive modeling of southern pine beetle distribution
 - 5 Conclusions
 - Acknowledgments

55

55

56

66

68

76

77

77

PART II Interactions of insects with altered host physiology

- The Eurasian spruce bark beetle in a warming climate: Phenology, behavior, and biotic interactions Sigrid Netherer and Almuth Hammerbacher
 - 1 *Ips typographus*—destructive force and keystone species in Eurasian spruce forests

Contents ix

- 2 Temperature effects on spruce bark beetle phenology and population dynamics
- 92

100

102

- 3 Beetle exploration of landscape and habitat—How climatic conditions and odor sources influence dispersal and host selection
- 4 Carbon castles: The formidable defenses of Norway spruce

5 Are (drought) stressed spruce trees more susceptible to *Ips typographus* attack?

6 The tripartite Norway spruce, Ips typographus, and fungal

	symbionts system	111
	7 Bark beetle–Norway spruce interactions in a	
	changing climate—Perspectives for science and	
	management	117
	Acknowledgments	118
	References	118
5.	Climate change alters host tree physiology and drives plant-insect interactions in forests of the southwestern	
	United States of America	133
	Thomas Seth Davis	
	1 Introduction	133
	2 Impacts of climate drivers on plant-insect interactions in	
	southwestern USA forest ecosystems	137
	3 What are the gaps in our understanding of	
	plant-insect interactions under climate change in	
	southwestern forests?	145
	4 Conclusions	147
	Acknowledgments	147
	References	147
	Further reading	151

x Contents

- Relationships between drought, coniferous tree physiology, and *Ips* bark beetles under climatic changes
 Bailey H. McNichol, Stephen R. Clarke, Massimo Faccoli, Cristian R. Montes, John T. Nowak, John D. Reeve, and Kamal J.K. Gandhi
 - 1 Introduction
 - 2 Results from literature linking *Ips* bark beetle outbreaks and drought
 - 3 Economic and ecological consequences of drought and *Ips* beetle outbreaks on conifers

156

172

5 Insect-plant interactions in host trees experiencing drought stress1766 Ips-drought interactions: A conceptual framework1797 Research gaps1798 Conclusions and future research directions180Acknowledgments182References182PART III Interactions of insects with altered		4 Anticipated changes in conifer physiology due to climate change	174	
7 Research gaps1798 Conclusions and future research directions180Acknowledgments182References182			176	
8 Conclusions and future research directions180Acknowledgments182References182		6 Ips-drought interactions: A conceptual framework	179	
Acknowledgments References 182		7 Research gaps	179	
References 182		8 Conclusions and future research directions	180	
United States of America, and the states of Amer		Acknowledgments	182	
PART III Interactions of insects with altered		References	182	
	PA	ART III Interactions of insects with altered		

disturbance regimes

 Interactions between catastrophic wind disturbances and bark beetles in forested ecosystems
 Benjamin M. Gochnour, Seth C. Spinner, Kier D. Klepzig, and Kamal J.K. Gandhi

1 Introduction 197

2 Interactions of wind disturbance with bark beetles

3 Postwindstorm forest management practices

Contents xi

4 Conceptual model of cross-scale interactions between	
windthrow and bark beetles	212
5 Conclusions	213
Acknowledgments	214
References	214

PART IV Ecosystem-level impacts of bark beetle outbreaks due to climate change

8. Bark beetle outbreaks alter biotic components of forested

	ecosystems	227
	Kamal J.K. Gandhi, Chelsea N. Miller, Paula J. Fornwalt, and	
	John M. Frank	
	1 Introduction	227
	2 Changes to the abiotic forest environment	230
	3 Changes to forest structure by bark beetle outbreaks	232
1	4 Responses of flora following bark beetle outbreaks	233
	5 Responses of fauna following bark beetle outbreaks	239
	6 Responses of soil microbiota following bark beetle outbreaks	247
	7 Conclusions	249
	Acknowledgments	251
	References	251

9. Eastern larch beetle, a changing climate, and impacts to northern tamarack forests
Fraser R. McKee, Marcella A. Windmuller-Campione,
Emily R. Althoff, Michael R. Reinikainen, Paul A. Dubuque, and
Brian H. Aukema
1 Introduction
261
2 Host species

Contents xii

3 Predisposing factors associated with tree-killing activity of	f
eastern larch beetles	266
4 Biology and ecology of eastern larch beetle	268
5 Shifts to bivoltine development in a warming climate	282
6 The impact of eastern larch beetle outbreaks on forests	284
7 Silvicultural systems of eastern larch	285
8 Future research needs	290
References	294

PART V Multitrophic changes mediated via climate change

- 10. Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles 303 Richard W. Hofstetter, Kier D. Klepzig, and Caterina Villari Changes to totest strature by bars 303
 - **1** Introduction
 - 2 Functions and interactions of ectosymbionts within beetle-infested trees
 - 3 Ectosymbiotic communities and their relationship with climate variables 312

306

- 4 Direct effects of temperature of ectosymbionts
- 5 Effects of climate change on tree condition (secondary

	defenses, nutrition, moisture) and the symbiotic	
	community	318
6	3 Projected effects of climate (temperature regimes, drought)	
	and changes to the ectosymbiotic community on bark	
	beetle ecology	320
7	7 Conceptual model	322
8	B Testable hypotheses	324
9	Critical research needs	325
F	References	326

Contents xiii

PART VI Management of bark beetles in altered forests and climate conditions

 Management tactics to reduce bark beetle impacts in North America and Europe under altered forest and climatic conditions Christopher J. Fettig, Joel M. Egan, Horst Delb,

Jacek Hilszczański, Markus Kautz, A. Steven Munson,

John T. Nowak, and Jose F. Negrón

1 Introduction

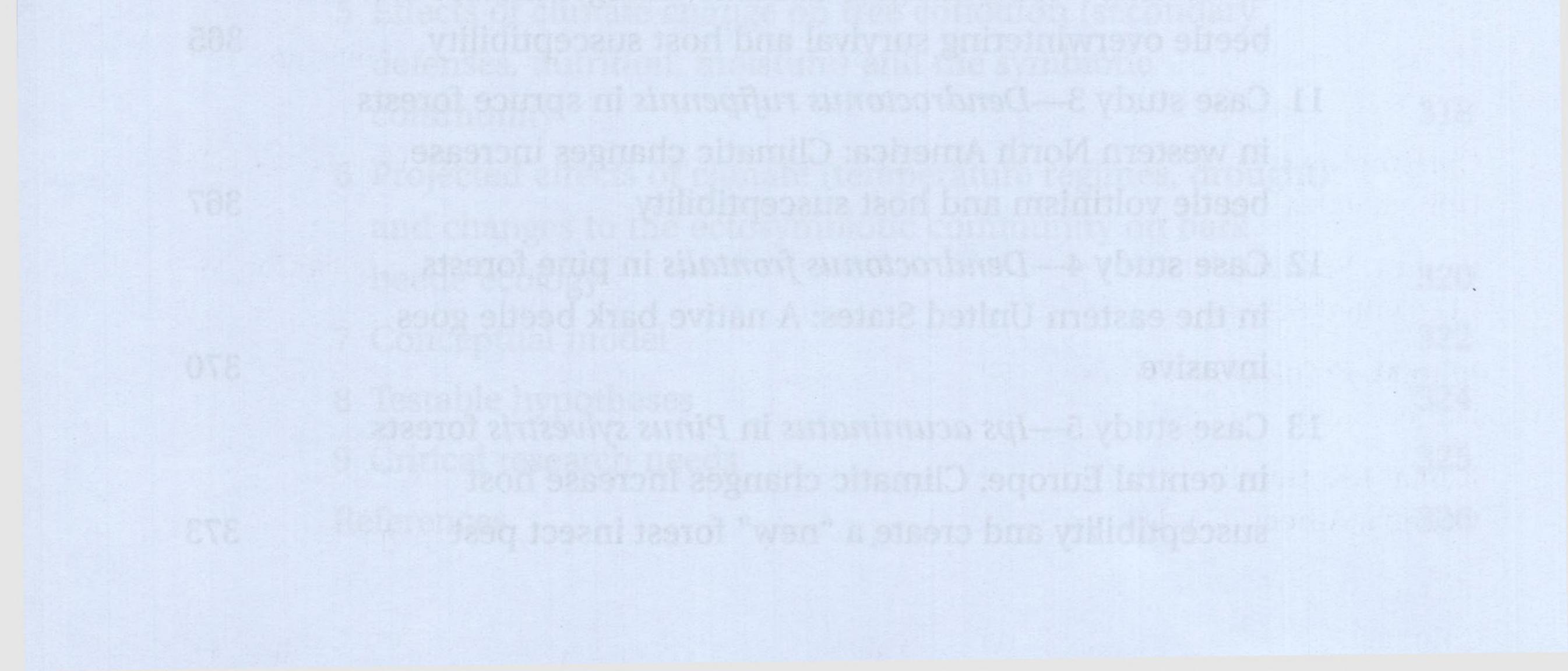
365

367

370

373

2	Development of outbreaks	349
3	Detection, survey, and risk and hazard rating models	351
4	Suppression	352
5	Sanitation	352
6	Insecticides	353
7	Semiochemicals	354
8	Prevention	355
9	Case study 1—Dendroctonus spp. in yellow pine forests in	
	the western United States: Changes in forest structure	
Serg.	and composition from fire suppression, livestock grazing,	
	and climatic changes increase host-tree susceptibility	357
10	Case study 2—Dendroctonus ponderosae in pine forests	
	in western North America: Climatic changes increase	


- beetle overwintering survival and host susceptibility
- 11 Case study 3—*Dendroctonus rufipennis* in spruce forests in western North America: Climatic changes increase beetle voltinism and host susceptibility
- 12 Case study 4—*Dendroctonus frontalis* in pine forests in the eastern United States: A native bark beetle goes invasive
- 13 Case study 5—*Ips acuminatus* in *Pinus sylvestris* forests in central Europe: Climatic changes increase host susceptibility and create a "new" forest insect pest

xiv Contents

14 Case study 6—*Ips typographus* in *Picea abies* forests in central Europe: Climatic changes and the legacy of off-site plantings increase forest susceptibility
15 Conclusions
Acknowledgments
References
380

12. Interactions among climate, disturbance, and bark beetles affect forest landscapes of the future Richard W. Hofstetter and Kamal J.K. Gandhi

1 Introduction	395
2 Forest management	398
3 Ten research needs and gaps	399
References	400
Index 405	

