Contents

Pref	ace to the th	nird edition	XV
Pref	ace to the se	econd edition	xix
	ace to first e		xxi
1.	Introdu	ction	
•			
Pai	rt I		
	sics		
2.		dynamics and statistical mechanics	
	2.1 Classi	cal thermodynamics	12
		Auxiliary functions	18
		Chemical potential and equilibrium	21
		Energy, pressure, and chemical potential	23
		tical thermodynamics	25
		Basic assumption	25
		Systems at constant temperature	27
	2.2.3	Towards classical statistical mechanics	28
	2.3 Ensen	nbles	31
	2.3.1	Micro-canonical (constant-NVE) ensemble	31
	2.3.2	Canonical (constant-NVT) ensemble	32
	2.3.3	Isobaric-isothermal (constant-NPT) ensemble	33
		Grand-canonical (constant-µVT) ensemble	34
	2.4 Ergod		36
	2.5 Linear	r response theory	38
	2.5.1	Static response	39
	2.5.2	Dynamic response	41
	2.6 Quest	tions and exercises	45
3.	Monte (Carlo simulations	
	3.1 Pream	nble: molecular simulations	53
	3.2 The <i>N</i>	Nonte Carlo method	54
	3.2.1	Metropolis method	56
	3.2.2	Parsimonious Metropolis algorithm	62
	3.3 A basi	ic Monte Carlo algorithm	62
	3.3.1	The algorithm	62

	3.3.2	Technica	al details	63
		3.3.2.1	Boundary conditions	65
			Truncation of interactions	67
		3.3.2.3	Whenever possible, use potentials that need no	
			truncation	72
		3.3.2.4	Initialization	72
		3.3.2.5	Reduced units	73
	3.3.3	Detailed	balance versus balance	78
	3.4 Trial n	noves		81
	3.4.1	Translati	onal moves	81
	3.4.2	Orientat	ional moves	87
		3.4.2.1	Rigid, linear molecules	88
		3.4.2.2	Rigid, nonlinear molecules	88
		3.4.2.3	Non-rigid molecules	89
	3.5 Quest	ions and	exercises	92
4.	Molecul	ar Dyna	mics simulations	
	4.1 Molec	ular Dyna	mics: the idea	97
	4.2 Molec	ular Dyna	mics: a program	98
	4.2.1	Initializa	ition	99
	4.2.2	The force	e calculation	102
	4.2.3	Integration	ng the equations of motion	104
	4.3 Equati	ons of mo	otion	106
			y of trajectories and the Lyapunov instability	106
			esirable features of an algorithm	110
			ersions of the Verlet algorithm	112
			formulation of time-reversible algorithms	118
			re way to look at the Verlet algorithm	122
	4.4 Quest	ions and e	exercises	123
5.	Comput	er expe	riments	
	5.1 Static	propertie	S	127
	5.1.1	Tempera	ture	127
	5.1.2	Internal	energy	128
	5.1.3	Partial m	nolar quantities	128
	5.1.4	Heat cap	pacity	129
	5.1.5	Pressure		130
			Pressure by thermodynamic integration	133
			Local pressure and method of planes	133
			Virtual volume changes	134
			Compressibility	135
	5.1.6	Surface t		135
	5.1.7		al properties	139
			Structure factor	139
			Radial distribution function	140
	5.2 Dynar			147
	5.2.1	Diffusion	1	148

		5.2.3	Comments on the Green-Kubo relations	160
	5.3	Statist	ical errors	167
		5.3.1	Static properties: system size	167
		5.3.2	Correlation functions	169
		5.3.3	Block averages	171
	5.4		ions and exercises	174
Par	t II			
		bles		
Ens	em	mies		
6.	Mo	onte C	Carlo simulations in various ensembles	
	6.1	Gener	al approach	182
			nical ensemble	182
			Monte Carlo simulations	183
		100000000000000000000000000000000000000	Justification of the algorithm	183
	6.3		ic-isothermal ensemble	184
	0.0		Statistical mechanical basis	184
			Monte Carlo simulations	188
			Applications	191
	6.4		sion-isothermal ensemble	193
			-canonical ensemble	195
	0.5		Statistical mechanical basis	196
			Monte Carlo simulations	199
			Molecular case	203
			Semigrand ensemble	206
		0.5.4	6.5.4.1 Phase coexistence in the semigrand ensemble	209
			6.5.4.2 Chemical equilibria	211
	66	Dhaco	coexistence without boundaries	216
	0.0			
			The Gibbs-ensemble technique	217
			The partition function	218
			Monte Carlo simulations	219
	67		Applications	226
	0./	Quest	ions and exercises	228
7.	Mo	olecula	ar Dynamics in various ensembles	
	7.1	Molec	ular Dynamics at constant temperature	234
		7.1.1	Stochastic thermostats	237
			7.1.1.1 Andersen thermostat	237
			7.1.1.2 Local, momentum-conserving stochastic	
			thermostat	239
			7.1.1.3 Langevin dynamics	242
		7.1.2	Global kinetic-energy rescaling	244
			7.1.2.1 Extended Lagrangian approach	245
			7.1.2.2 Application	253
		7.1.3	Stochastic global energy rescaling	256

Order-n algorithm to measure correlations

155

	7.2		,	our thermostat carefully mics at constant pressure		257 258
			ions and e			259
Par	t II	I				
			calcul	ations		
3.	Fre	ee-ene	ergy calc	ulations		
	8.1	Introd	uction			263
		8.1.1	Importan	ce sampling may miss important states		263
				ee energy special?		264
				free energies		267
	8.3	Free e	-	d first-order phase transitions		267
		8.3.1		ere free-energy calculations are not ne	eeded	268
				Direct coexistence calculations		268
				Coexistence without interfaces		270
	0.4			Tracing coexistence curves		270
	8.4			pute free energies		274
				ynamic integration		274
	0 =			ian thermodynamic integration		277
	0.5		The partic			279
				cle insertion method nsertion method: other ensembles		280 284
				potential differences		287
	86		ram metho			288
	0.0	_		ing-distribution method		289
				on expression		292
				ce-ratio method		293
				rameters and Landau free energies		296
		8.6.5		mpling of free-energy profiles		299
		8.6.6	Umbrella			301
				of-states sampling		303
		8.6.8	Wang-Lar	ndau sampling		304
		8.6.9	Metadyna	amics		309
		8.6.10	Piecing fr	ee-energy profiles together: general as	pects	311
			_	ee-energy profiles together: MBAR		312
				free energy methods		317
	8.8	Questi	ons and ex	xercises		320
	Fre	e ene	rgies of	solids		
	9.1	Therm	odynamic	integration		324
	9.2	Comp	utation of	free energies of solids		326
		9.2.1	Atomic so	olids with continuous potentials		326
		9.2.2	Atomic so	olids with discontinuous potentials		329
		9.2.3		r and multi-component crystals		330
		9.2.4	Einstein-c	rystal implementation issues		332

	9.3	9.2.5 Constraints and finite-size effects Vacancies and interstitials 9.3.1 Defect free energies 9.3.1.1 Vacancies 9.3.1.2 Interstitials	340 346 346 348 350
10.	Fre	ee energy of chain molecules	
		Chemical potential as reversible work Rosenbluth sampling 10.2.1 Macromolecules with discrete conformations 10.2.2 Extension to continuously deformable molecules 10.2.3 Overlapping-distribution Rosenbluth method 10.2.4 Recursive sampling 10.2.5 Pruned-enriched Rosenbluth method	351 352 353 357 363 365 366
	t I\van	ced techniques	
11.	Loi	ng-ranged interactions	
	11.2 11.3 11.4 11.5 11.6	Introduction Ewald method 11.2.1 Dipolar particles 11.2.2 Boundary conditions 11.2.3 Accuracy and computational complexity Particle-mesh approaches Damped truncation Fast-multipole methods Methods that are suited for Monte Carlo simulations 11.6.1 Maxwell equations on a lattice 11.6.2 Event-driven Monte Carlo approach Hyper-sphere approach	371 373 382 385 386 393 394 398 399 402 402
12.	Co	nfigurational-bias Monte Carlo	
	12.2 12.3 12.4	Biased sampling techniques 12.1.1 Beyond Metropolis 12.1.2 Orientational bias Chain molecules 12.2.1 Configurational-bias Monte Carlo 12.2.2 Lattice models 12.2.3 Off-lattice case Generation of trial orientations 12.3.1 Strong intramolecular interactions Fixed endpoints 12.4.1 Lattice models	406 407 413 414 417 424 424 432 432
		12.4.2 Fully flexible chain	434

		12.4.3 Strong intramolecular interactions	436
	12.5	Beyond polymers	436
		Other ensembles	440
		12.6.1 Grand-canonical ensemble	440
	12.7	Recoil growth	445
		12.7.1 Algorithm	446
	12.8	Questions and exercises	450
13.	Ac	celerating Monte Carlo sampling	
	13.1	Sampling intensive variables	455
		13.1.1 Parallel tempering	457
		13.1.2 Expanded ensembles	464
	13.2	Noise on noise	467
	13.3	Rejection-free Monte Carlo	468
		13.3.1 Hybrid Monte Carlo	468
		13.3.2 Kinetic Monte Carlo	469
		13.3.3 Sampling rejected moves	471
	13.4	Enhanced sampling by mapping	473
		13.4.1 Machine learning and the rebirth of static Monte Carlo	
		sampling	475
		13.4.2 Cluster moves	479
		13.4.2.1 Cluster moves on lattices	480
		13.4.2.2 Off-lattice cluster moves	482
		13.4.3 Early rejection method	484
		13.4.4 Beyond detailed-balance	486
14.	Tin	ne-scale-separation problems in MD	
	14.1	Constraints	494
		14.1.1 Constrained and unconstrained averages	499
		14.1.2 Beyond bond constraints	505
	14.2	On-the-fly optimization	506
	14.3	Multiple time-step approach	509
15.	Ra	re events	
	15.1	Theoretical background	516
		Bennett-Chandler approach	520
		15.2.1 Dealing with holonomic constraints (Blue-Moon	F22
	15.2	ensemble)	522
		Diffusive barrier crossing	527
	13.4	Path-sampling techniques 15.4.1 Transition-path sampling	534 535
		15.4.1 Transition-path sampling 15.4.1.1 Path ensemble	536
		15.4.1.1 Path ensemble 15.4.1.2 Computing rates	538
		15.4.1.2 Computing rates 15.4.2 Path sampling Monte Carlo	543
		15.4.2 Path sampling Monte Carlo 15.4.3 Beyond transition-path sampling	546
		15.4.4 Transition-interface sampling	546
	15.5	Forward-flux sampling	547
	10.0	Tormara man sampling	511

	15.5.1 Jumpy forward-flux sampling 15.5.2 Transition-path theory 15.5.3 Mean first-passage times 15.6 Searching for the saddle point 15.7 Epilogue	548 549 552 556 558
16.	Mesoscopic fluid models	
	 16.1 Dissipative-particle dynamics 16.1.1 DPD implementation 16.1.2 Smoothed dissipative-particle dynamics 16.2 Multi-particle collision dynamics 16.3 Lattice-Boltzmann method 	561 562 566 567 569
	rt V pendices	
A.	Lagrangian and Hamiltonian equations of motion	573
	A.1 Action A.2 Lagrangian A.3 Hamiltonian A.4 Hamilton dynamics and statistical mechanics A.4.1 Canonical transformation A.4.2 Symplectic condition A.4.3 Statistical mechanics	573 575 577 580 580 581 583
B.	Non-Hamiltonian dynamics	587
C.	Kirkwood-Buff relations	591
	C.1 Structure factor for mixtures C.2 Kirkwood-Buff in simulations	591 593
D.	Non-equilibrium thermodynamics	595
	D.1 Entropy production D.1.1 Enthalpy fluxes D.2 Fluctuations D.3 Onsager reciprocal relations	595 597 597 600
E.	Non-equilibrium work and detailed balance	603
F.	Linear response: examples	607
	F.1 Dissipation F.2 Electrical conductivity F.3 Viscosity F.4 Elastic constants	607 610 611 612

G.	Committor for 1d diffusive barrier crossing	617
	G.1 1d diffusive barrier crossing G.2 Computing the committor	617 618
Н.	Smoothed dissipative particle dynamics	621
	H.1 Navier-Stokes equation and Fourier's law H.2 Discretized SDPD equations	621 622
I.	Saving CPU time	625
	I.1 Verlet listI.2 Cell listsI.3 Combining the Verlet and cell listsI.4 Efficiency	625 629 630 631
J.	Some general purpose algorithms	637
	J.1 Gaussian distribution J.2 Selection of trial orientations J.3 Generate random vector on a sphere J.4 Generate bond length J.5 Generate bond angle J.6 Generate bond and torsion angle	637 638 638 639 640 641
D		
	rt VI pository ¹	
K.	Errata	645
L.	Miscellaneous methods	647
M.	Miscellaneous examples	649
N.	Supporting information for case studies	651
O.	Small research projects	653
P.	Hints for programming	655
Acro Glos Inde		657 695 697 701 715

¹ Repository is available in its entirety online at https://www.elsevier.com/books-and-journals/book-companion/9780323902922.

Online appendices

K.	Errata	e1
L.	Miscellaneous methods	e3
	L.1 Higher-order integration schemes	e3
	L.2 Surface tension via the pressure tensor	e4
	L.3 Micro-canonical Monte Carlo	e5
	L.4 Details of the Gibbs "ensemble"	e6
	L.4.1 Free energy of the Gibbs ensemble	e6
	L.4.1.1 Basic definitions and results for the canonical	
	ensemble	e6
	L.4.1.2 The free energy density in the Gibbs ensemble	e8
	L.4.2 Graphical analysis of simulation results	e13
	L.4.3 Chemical potential in the Gibbs ensemble	e17
		e18
	L.5 Multi-canonical ensemble method	e18
		e22
		e22
		e22
		e24
		e30
		e32
		e33
		e37
		e41
		e45
		e45
		e48
		e50
		e54
		e57
		e61
		e62
		e65
		e67
		e67
		e68
		e68
M.	Miscellaneous examples	e71
	1.1 Gibbs ensemble for dense liquids	e71
	01	e71
	1.3 Zeolite structure solution	e74

N.	Supporting information for case studies	e75
	N.1 Equation of state of the Lennard-Jones fluid-I	e75
	N.2 Importance of detailed balance	e77
	N.3 Why count the old configuration again?	e79
	N.4 Static properties of the Lennard-Jones fluid	e79
	N.5 Dynamic properties of the Lennard-Jones fluid	e82
	N.6 Algorithms to calculate the mean-squared displacement	e83
	N.7 Equation of state of the Lennard-Jones fluid	e85
	N.8 Phase equilibria from constant-pressure simulations	e86
	N.9 Equation of state of the Lennard-Jones fluid - II	e87
	N.10 Phase equilibria of the Lennard-Jones fluid	e87
	N.11 Use of Andersen thermostat	e89
	N.12 Use of Nosé-Hoover thermostat	e90
	N.13 Harmonic oscillator (I)	e92
	N.14 Nosé-Hoover chain for harmonic oscillator	e93
	N.15 Chemical potential: particle-insertion method	e93
	N.16 Chemical potential: overlapping distributions	e94
	N.17 Solid-liquid equilibrium of hard spheres	e96
	N.18 Equation of state of Lennard-Jones chains	e101
	N.19 Generation of trial configurations of ideal chains	e101
	N.20 Recoil growth simulation of Lennard-Jones chains	e104
	N.21 Multiple time step versus constraints	e107
	N.22 Ideal gas particle over a barrier	e109
	N.23 Single particle in a two-dimensional potential well	e112
	N.24 Dissipative particle dynamics	e114
	N.25 Comparison of schemes for the Lennard-Jones fluid	e116
0.	Small research projects	e119
	O.1 Adsorption in porous media	e119
	O.2 Transport properties of liquids	e120
	O.3 Diffusion in a porous medium	e120
	O.4 Multiple-time-step integrators	e121
	O.5 Thermodynamic integration	e122
,	Hints for programming	e125