CONTENTS

List of Figure and I	ables		X1
Description			xiii
Acknowledgments			XV
Author's Foreword			xvii
Part One The	Clim	ate Change Challenge	1
Chapter One	Intr	oduction	3
	1.1	What Is "Climate Change"?	4
		What We Know with Confidence	5
	1.3	Is Global Warming Dangerous?	8
		1.3.1 The Goldilocks Dilemma	9
		1.3.2 Defining "Dangerous"	10
		1.3.3 The Catastrophe Narrative	12
		1.3.4 Vulnerability to Climate Change	13
Chapter Two	Con	sensus, or Not?	19
	2.1	The Problem of Overconfidence	21
	2.2	Why Scientists Disagree	22
	2.3	Biases Caused by a Consensus Building Process	24
	2.4	Heresy, Doubt, and Denial	26
		2.4.1 Scientific Skepticism	27
		2.4.2 Climate Heretics	29
		2.4.3 Challenging the Consensus on	
		COVID-19 Origins	30
	2.5	Rethinking Consensus Messaging	31
Chapter Three	The	Climate Change Response Challenge	39
	3.1	Inconvenient Truths	40
	3.2	The Sustainability Trap	41
		3.2.1 Resilience and the Tension with Sustainability	42
		3.2.2 Thrivability and Anti-Fragility	43
	3.3	Warming Is Not the Only Problem	44
	3.4	Tame Problem or Wicked Mess?	45

Chapter Four	Mixing Science and Politics		
	4.1	Models of the Science-Policy Interface	52
	4.2	Politicizing Climate Science	52
	4.3	Scientizing Climate Policy	55
	4.4	Climate Scientists and Power Politics	57
	4.5	Institutional Politics of Climate Science	59
Part Two Unc	ertain	ty of Twenty-First Century Climate Change	65
Chapter Five	The	Climate Change "Uncertainty Monster"	67
	5.1	The Uncertainty Monster	67
	5.2	Uncertainty Typologies	69
		5.2.1 Level of Uncertainty	70
	5.3	Uncertainty and the IPCC	71
	5.4	Taming the Uncertainty Monster	72
Chapter Six	Clim	nate Models	77
	6.1	Global Climate Models	78
		6.1.1 Complexity and Chaos	80
		6.1.2 Model Calibration and Tuning	81
		6.1.3 Ensemble Modeling Techniques	82
	6.2	Climate Model Inadequacies and Uncertainties	83
	6.3	Sociology and Epistemology of Climate Modeling	85
		6.3.1 Assessing Confidence in Climate Models	86
		6.3.2 Fitness for Purpose	88
	6.4	Are GCMs the Best Tools?	89
Chapter Seven	IPC	C Scenarios of Twenty-First Century Climate	
HE BEHANNER	Cha	nge	95
	7.1	Emissions Scenarios	95
		7.1.1 Extreme Emissions Scenario	97
	7.2	Climate Sensitivity to CO, Emissions	99
		7.2.1 Different Ways of Estimating Sensitivity	100
		7.2.2 Transient Climate Response	102
	7.3	IPCC Projections of Manmade Global	
		Warming for the Twenty-First Century	103
	7.4	Climate Impact-Drivers	104
		7.4.1 Detection of Changes in Extreme	
		Weather and Climate Events	105
		7.4.2 Sea Level Rise	106
	7.5	Climate Predictions or Possible Futures?	107

			CONTENTS	vii	
Chapter Eight	Alte	rnative	Methods for Generating Climate		
	Cha	inge Scenarios			
	8.1	Escap	e from Model-Land	114	
	8.2	Emiss	ions and Temperature Targets	115	
		8.2.1	Natural Internal Variability	115	
		8.2.2	Volcanoes	117	
		8.2.3	Solar Variations	118	
		8.2.4	Global Surface Temperature Scenarios		
			to 2050	122	
	8.3	Regio	nal Scenarios of Extreme Events	125	
		8.3.1	Extreme Weather and Climate Events	126	
		8.3.2	Scenarios for Stress Test Applications	129	
Chapter Nine	Wha	at's the	Worst Case?	137	
	9.1	Scena	rio Probabilities and Plausibility	139	
		9.1.1	Possibility Theory	139	
		9.1.2	Plausibility	140	
	9.2	Fat Ta	ails and Tall Tales	141	
	9.3	Scena	rio Justification and Falsification	142	
	9.4	Worst	-Case Weather and Climate Events	144	
		9.4.1	Florida Landfalling Hurricanes	145	
		9.4.2	ARkStorm	147	
		9.4.3	South Asian Monsoon Failure	148	
	9.5	Sea L	evel Rise	151	
		9.5.1	Storylines of West Antarctic Ice Sheet		
			Collapse	152	
		9.5.2	Candidate Worst-Case Scenarios	153	
		9.5.3	Scenario Falsification and the Plausible		
			Worst Case	154	
Part Three	Clim	ate Ris	sk and Response	163	
Chapter Ten	Risk	and It	s Assessment	165	
	10.1	Risk a	and Perception	165	
			Risk Perceptions	167	
		10.1.2	Risk Characterization	168	
		10.1.3	Direct versus Systemic Risk	171	
	10.2	Risk A	Assessment	172	
		10.2.1	Acceptable versus Intolerable Risk	173	
		10.2.2	Assessment of Systemic Risks	174	
	10.3	Clima	te Change Risk	175	

-

	10.3.1 How We have Mischaracterized	
	Climate Risk	176
	10.3.2 Reframing the Assessment of Climate Risk	179
	10.3.3 Climate Change versus COVID-19 Risk	183
Chapter Eleven	Risk Management	189
	11.1 Risk Management Principles	189
	11.1.1 Risk Responses	190
	11.1.2 Risk Management Strategies	191
	11.2 Principles of Precaution	193
	11.2.1 Precautionary Principle	194
	11.2.2 Proportionary and Proactionary Principles	197
	11.3 Applications of the Precautionary Principle	198
	11.3.1 COVID-19	198
	11.3.2 Climate Change	201
	11.4 Resilience and Robustness	204
	11.4.1 Resilience	205
	11.4.2 Robustness	206
	11.5 Managing Systemic Risk	207
Chapter Twelve	Decision-Making Under Deep Uncertainty	213
	12.1 Classical Decision Analysis	214
	12.2 Decision-Making Under Deep Uncertainty	
	(DMDU) Framework	216
	12.3 Robust Decision-Making	218
	12.4 Robustness Metrics	220
	12.5 Dynamic Adaptive Decision-Making	221
Chapter Thirteen	Adaptation, Resilience, and Development	227
	13.1 Context	228
	13.1.1 Adaptation Success Stories	228
	13.1.2 Political Context	230
	13.1.3 Misplaced Blame	232
	13.2 Adaptation Frameworks	234
	13.2.1 Resist or Retreat	234
	13.2.2 Microeconomics of Adaptation	236
	13.2.3 Planning to Fail Safely	237
	13.3 Adaptation Lessons and Challenges	240
	13.3.1 Lessons	240
	13.3.2 Maladaptation	242
	13.3.3 Resilience Traps	245

	CONTENTS	ix
	13.4 Development and Resilience	246
	13.4.1 Adaptive Capacity	247
	13.4.2 Disaster Reduction	248
	13.4.3 Conflicts with Mitigation	250
	13.4.4 Bangladesh	252
Chapter Fourteen	Mitigation	263
	14.1 Carbon Mitigation and Management	263
	14.1.1 Global Carbon Cycle, Feedbacks and	
	Budget	264
	14.1.2 Carbon Sequestration	266
	14.2 Short-Lived Carbon Pollutants	268
	14.3 Energy Transitions	270
	14.3.1 History of Previous Energy Transitions	271
	14.3.2 Current State of the Energy Transition	272
	14.3.3 Vision—2100	275
	14.4 Managing Transition Risk: Electric Power Systems	279
	14.4.1 Relevant Risk Management Principles	280
	14.4.2 Nuclear Power	281
	14.5 Mid Transition	283
Chapter Fifteen	Climate Risk and the Policy Discourse	293
	15.1 Moral Dilemmas and the Fallacy of Control	294
	15.2 Towards Post-Apocalyptic Climate Politics	296
	15.2.1 Apocalyptic Climate Politics	297
	15.2.2 Framework for a Post-Apocalyptic Politics	299
	15.2.3 Politics of Climate Uncertainty	300
	15.3 Climate Pragmatism	301
	15.4 Wicked Science for Wicked Problems	303
Index		311