Contents

Contributors Series editor biography Preface to the series

Part One Fundamentals of colloidal metal oxide

xi xv xvii

nanocrystals

1 Physics and chemistry of colloidal metal oxide nanocrystals and their applications to nanotechnologies and microsystems: An introduction

Anu Tresa Sunny, Prajitha Velayudhan, Sabu Thomas

- 1.1 Nanocolloids
- 1.2 Stability of nanocolloids
- 1.3 Classification of colloidal systems can be done on the basis of a variety of features
- 1.4 Interaction of colloidal solutions with laser light
- 1.5 Super paramagnetism in colloidal metal oxides
- 1.6 Applicability of nanocolloids of metal oxides to research and industry
- 1.7 Colloidal risk assessment
- 1.8 Conclusion

References

Sur	face chemistry, modification, and engineering of colloidal	
nan	ocrystals	15
Basi	hiru Kayode Sodipo	
2.1	Introduction to the concept of surface engineering	15
2.2	History of development of surface modification and engineering	16
2.3	Prevailing major principles	16
2.4	Chemical surface modification via wet chemistry	17
2.5	Thermal decomposition (pyrolysis) method	18
2.6	The gas phase method	19
2.7	Plasma method	21
2.8	Conclusion	21
Ack	nowledgments	22
Refe	erences	22
Furt	her reading	24

3	Nan nan	osecond pulsed laser ablation to oparticles	o synthesize ternary alloy colloidal	25
	Y. A	l-Douri		
	3.1	Introduction		25
	3.2	Pulsed laser ablation		26
	3.3	Colloidal nanoparticles		27
	3.4	The experimental process		29
	3.5	Results and discussion		30
	3.6	Conclusions		35
	Refe	erences		35

Part Two Formation, stabilisation and characterisation

39

41

of colloidal nanocrystals

vi

- Aqueous methods for the synthesis of colloidal metal oxide nanoparticles at ambient pressure
 Chih-hung Chang, Yujuan He, Changqing Pan
 4.1 Introduction
 4.2 Water as a solvent
 - 4.3 Mechanism of formation of colloidal metal oxide nanoparticles in aqueous medium
 - 4.4 Stability of colloidal nanoparticles in aqueous solution
 - 4.5 The effect of fluid flow
 - 4.6 Merits and demerits of the aqueous synthesis strategy
 - 4.7 Case study: Synthesis, assembly, and deposition of ZnO nanostructures
 - 4.8 ConclusionReferencesFurther reading

5

Green synthesis protocol on metal oxide nanoparticles using plant extracts R. Jose Varghese, Nkosingiphile Zikalala, El Hadji Mamour Sakho, Oluwatobi S. Oluwafemi Introduction 5.1 General Protocol for plant extract 5.2 CuO nanoparticles 5.3 5.4 Fe_3O_4 5.5 TiO₂ ZnO 5.6 Challenges in plant extract-mediated synthesis 5.7 Conclusion 5.8 References Further reading

67

7

6	Fea Mol	tures of metal oxide colloidal nanocrystal characterization	83
	War	n Nur Aini Wan Mokthar. Nur Svazwani Osman	
	6.1	Introduction	83
	6.2	Strategies and advances of microscopy in the characterization	
		of colloidal metal oxide nanocrystals	83
	6.3	Spectral characterization of colloidal metal oxides	90
	6.4	Probing of nano colloids of metal oxides by diffraction techniques	110
	6.5	Conclusion	117
	Refe	erences	117

Part Three Applications of colloidal metal oxides

123

vii

Coll app	loidal core-shell metal, metal oxide nanocrystals, and their lications	125
Isra	el López, Lorena Garza-Tovar, Elijah T. Adesuji,	
Mar	garita Sanchez-Dominguez	
7.1	Introduction	125
7.2	Formation, growth, and assembly of colloidal core-shell	
	metal oxide nanocrystals	127
7.3	Assembly of core-shell metal and metal oxide nanocrystals	157
7.4	Colloidal stability of core-shell metal oxides: Electrostatic,	
	steric, and electrosteric stabilization; functionalization	160
7.5	Applications of core-shell nanocrystals	162
7.6	Conclusions: Summary, current challenges, and perspectives	166
Refe	erences	166
Furt	her reading	181

8 Colloidal metal oxides in energy technologies

183

	Sungwook Chung	
	8.1 Introduction	183
	8.2 Applications of colloidal metal oxide nanoparticles for energy	
	technologies	186
	8.3 Conclusions and challenges	196
	Acknowledgment	198
	References	198
	Further reading	201
)	Colloidal metal oxides in electronics and optoelectronics	203
	Jizhong Song	
	9.1 General aspects	203
	9.2 Solution processability	204
	9.3 Electrical properties	207

Contents

6

	94	Optical features	209
	95	Applications in electronics and optoelectronics	213
	96	Expectations and challenges	231
	9.7	Conclusion	232
	Refer	ences	233
10	Collo	idal metal oxide nanocrystals in catalysis	247
	Anchi	u Ashok, Anand Kumar, Faris Tarlochan	
	10.1	Introduction	247
	10.2	Electrocatalysis: Fuel cells	248
	10.3	Electron transfer reaction	258
	10.4	Cross-coupling reaction	262
	10.5	Hydrogenation	272
	10.6	Conclusion and future prospects	282
	Refer	ences	284
11	Collo	idal magnetic metal oxide nanocrystals and their applications	289
	G.M.	Lekha, Sony George	
	11.1	Introduction	289
	11.2	Properties of metal oxide nanoparticles	293
	11.3	Several classes of significant magnetic metal oxide NPs	298
	11.4	Preparations of metal oxide nanoparticles	300
	11.5	Stability and functionalization of magnetic metal oxide NPs	301
	11.6	Applications of magnetic nanoparticles	304
	11.7	Ferrofluids—Synthesis and applications	317
	11.8	Applications	320
	11.9	Conclusions and future perspectives	321
	Refer	rences	321

12 Aerogels and their applications

27

viii

337

	Susan Montes, Hajar Maleki	
	12.1 Introduction	337
	12.2 Synthesis of aerogels	341
	12.3 Main aerogel compositions	352
	12.4 Applications	373
	12.5 Conclusions	387
	Acknowledgment	388
	References	389
	Further reading	399
13	Colloidal oxide-based heterostructured nanocrystals	401
	P. Davide Cozzoli, Concetta Nobile	
	13.1 Introduction	401
	13.2 Synthesis of HNCs: Basic concepts and formation mechanisms	403
	13.3 Heterostructures with core/shell geometries	407

Contents

+

	13.4	Hetero-oligomer architectures	427
	13.5	Conclusions	450
	Refere	nces	451
			471
14	Metal	oxides for energy applications	4/1
	Sanjay	Kumar, Sudhir Saralch, Uzma Jabeen, Dinesh Pathak	471
	14.1	Introduction	4/1
	14.2	Cupric oxide (CuO)	4/2
	14.3	Zinc oxide (ZnO) $C \rightarrow U (U U U) \rightarrow 1 (C O O)$	401
	14.4	Cobalt (II, III) oxide (Co_3O_4)	484
	14.5	Solar cell	484
	14.6	Fabrication method for oxide film	486
	14.7	Present status of oxides in technology	496
	14.8	Conclusion and future directions	497
	Refere	nces	499
15	Colloi	dal magnetic metal oxide nanocrystals and their	
	applic	ations in sustained drug release	505
	Sanjee	v Kumar Jat, Rama Ranjan Bhattacharjee	
	15.1	Introduction	505
	15.2	Issues associated with conventional drug release systems	506
	15.3	Materials for drug release	507
	15.4	Liposome-nanoparticle hybrids for drug release	509
	15.5	Benefits of liposome-nanoparticle hybrid system	510
	15.6	Methods for design and synthesis of liposome-nanoparticle	
		hybrids	511
	15.7	Issues related to the application of nanoparticles	512
	15.8	Nanoparticle system for drug release	513
	15.9	Colloidal magnetic nanoparticles	513
	15.10	Improved drug release approaches using colloidal magnetic	
		metal oxide nanoparticles	514
	15.11	General methodologies for controlled drug release	515
	15.12	Strategies for controlled drug release	515
	15.13	Prolonged duration	516
	15.14	External regulated and self-regulated controlled release systems	516
	15.15	Case study: In situ liposomal coating decorated iron oxide	
		nanoparticle as a novel self-release system	517
	15.16	Conclusions	520
	Refere	nces	520
16	Envire	onmental remediation	525
	Eeshar	n Kalita, Julie Baruah	
	16.1	Introduction	525
	16.2	Toxicity aspects and health hazards	526
	16.3	Oxide nanomaterials in water purification	530

ix

2	-	4	4.2
	on	ren	TC
L	\mathbf{u}	uun	LO.

	16.4	Heavy metal remediation	533
	16.5	Treatment of contaminated soil and nuclear waste	536
	16.6	Nanodetoxification of xenobiotics	544
	16.7	Waste and wastewater remediation	550
	16.8	Colloids and composites in water purification	556
	16.9	Abatement of pesticides and organic dyes	562
	16.10	Conclusion	566
	Refere	nces	567
	Further	r reading	575
Ind	ex		577

Х

The second second families were presented out the birth and birth of the	
- Second and the second second reaction and reactions and the second sec	

