Contents

Fo	reword	Empiroti montonu'i stanti naovy o mito	xiii
1.	PREHISTOR	RY OF CRYPTOGRAPHY	1
Ex	ercises		1
	Exercise 1	Mappings, etc.	1
	Exercise 2	A Simple Substitution Cryptogram	4
	Exercise 3	Product of Vigenère Ciphers	5
	Exercise 4	*One-Time Pad	5
	Exercise 5	*Latin Squares	6
	Exercise 6	Enigma	6
So	lutions		8
2.	CONVENTIO	ONAL CRYPTOGRAPHY	17
Ex	ercises		17
	Exercise 1	Weak Keys of DES	17
	Exercise 2	Semi-Weak Keys of DES	17
	Exercise 3	Complementation Property of DES	17
	Exercise 4	3DES Exhaustive Search	18
	Exercise 5	2DES and Two-Key 3DES	18
	Exercise 6	*Exhaustive Search on 3DES	19
	Exercise 7	An Extension of DES to 128-bit Blocks	20
	Exercise 8	Attack Against the OFB Mode	21
	Exercise 9	*Linear Feedback Shift Registers	22
	Exercise 10	*Attacks on Cascade Ciphers	23
	Exercise 11	Attacks on Encryption Modes I	24
	Exercise 12	Attacks on Encryption Modes II	28
	Exercise 13	*A Variant of A5/1 I	29

		*A Variant of A5/1 II	31
	Exercise 15	*Memoryless Exhaustive Search	32
Sol	utions		34
3.	DEDICATED	CONVENTIONAL	
	CRYPTOGR	APHIC PRIMITIVES	57
Ex	ercises		57
	Exercise 1	Collisions in CBC Mode	57
	Exercise 2	Collisions	57
	Exercise 3	Expected Number of Collisions	58
	Exercise 4	Multicollisions on Hash Functions	58
	Exercise 5	Weak Hash Function Designs	60
	Exercise 6	Collisions on a Modified MD5	62
	Exercise 7	First Preimage on a Modified MD5	62
	Exercise 8	*Attacks on Yi-Lam Hash Function	62
	Exercise 9	MAC from Block Ciphers	63
	Exercise 10	CFB-MAC	64
	Exercise 11	*Universal Hashing	64
Sol	utions		66
4.	CONVENTIO	ONAL SECURITY ANALYSIS	81
Exe	ercises		81
		The SAFER Permutation	81
	Exercise 2	*Linear Cryptanalysis	81
	Exercise 3	*Differential and Linear Probabilities	82
	Exercise 4	*Feistel Schemes	82
	Exercise 5	*Impossible Differentials	84
	Exercise 6	*Attacks Using Impossible Differential	84
	Exercise 7	*Multipermutations	86
	Exercise 8	*Orthomorphisms	87
	Exercise 9	*Decorrelation	88
	Exercise 10	*Decorrelation and Differential Cryptanalysis	89
		*Decorrelation of a Feistel Cipher	89
		*A Saturation Attack against IDEA	89
		*Fault Attack against a Block Cipher	94
Sol	utions		97

-	-	-
	•	r
	- 7	

5.		PROTOCOLS WITH ONAL CRYPTOGRAPHY	125
Ex	ercises		125
GYI	Exercise 1	Flipping a Coin by Email	125
	Exercise 2	Woo-Lam Protocol	126
	Exercise 3	MicroMint I	127
	Exercise 4	MicroMint II	127
	Exercise 5	Bluetooth Pairing Protocol	128
	Exercise 6	UNIX Passwords	128
	Exercise 7	Key Enlargement	128
Sol	utions		130
6.	ALGORITHI	MIC ALGEBRA	135
Exe	ercises		135
	Exercise 1	Captain's Age	135
	Exercise 2	Roots in \mathbf{Z}_{77}^*	135
	Exercise 3	*When is \mathbf{Z}_n^* Cyclic?	135
	Exercise 4	Finite Fields and AES	137
	Exercise 5	*A Special Discrete Logarithm	138
	Exercise 6	*Quadratic Residues	138
	Exercise 7	*Cubic Residues	139
	Exercise 8	*Generating Generators for \mathbf{Z}_p^*	139
	Exercise 9	*Elliptic Curves and Finite Fields I	140
	Exercise 10	*Elliptic Curves and Finite Fields II	141
Sol	utions		142
7.	ALGORITHI	MIC NUMBER THEORY	159
Exe	ercises		159
	Exercise 1	*Rho Method and Distinguished Points	159
	Exercise 2	*Factorization	160
	Exercise 3	*Prime Numbers	161
	Exercise 4	*Factoring $n = p \cdot q$	161
	Exercise 5	Strong Prime Numbers	161
	Exercise 6	Complexity of Eratosthenes Sieve	161
	Exercise 7	*Hash Function Based on Arithmetics	164
Sol	utions		165

8.	ELEMENTS	OF COMPLEXITY THEORY	175
Ex	ercises		175
	Exercise 1	*Regular Language	175
	Exercise 2	*Finite State Automaton	175
	Exercise 3	*Turing Machine	175
	Exercise 4	*Graph Colorability I	176
	Exercise 5	*Graph Colorability II	176
Sol	utions		177
9.	PUBLIC KE	Y CRYPTOGRAPHY	181
Ex	ercises		181
	Exercise 1	*Okamoto-Uchiyama Cryptosystem	181
	Exercise 2	RSA Cryptosystem	182
	Exercise 3	RSA for Paranoids	182
	Exercise 4	RSA - Common Moduli	183
	Exercise 5	Networked RSA	183
	Exercise 6	Repeated RSA Encryption	184
	Exercise 7	Modified Diffie-Hellman	184
	Exercise 8	*Rabin Cryptosystem	184
	Exercise 9	*Paillier Cryptosystem	185
	Exercise 10	*Naccache-Stern Cryptosystem	186
Sol	utions		188
10.	DIGITAL SIG	GNATURES	199
Ex	ercises		199
	Exercise 1	Lazy DSS	199
	Exercise 2	*DSS Security Hypothesis	199
	Exercise 3	DSS with Unprotected Parameters	200
	Exercise 4	Ong-Schnorr-Shamir Signature	201
	Exercise 5	Batch Verification of DSS Signatures	201
	Exercise 6	Ring Signatures	203
Sol	lutions		205
11.	CRYPTOGR	APHIC PROTOCOLS	211
Ex	ercises		211
	Exercise 1	Breaking the RDSA Identification Scheme	211
	Exercise 2	*A Blind Signature Protocol for a Variant of DSA	213

Exercise 3	*Fiat-Shamir Signature I	215
Exercise 4	*Fiat-Shamir Signature II	216
Exercise 5	*Authenticated Diffie-Hellman Key Agreement	010
	Protocol	216
Exercise 6	Conference Key Distribution System	217
Solutions		220
12. FROM CRYP	TOGRAPHY TO	
	ATION SECURITY	231
Exercises		231
Exercise 1	A Hybrid Cryptosystem Using RSA and DES	231
Exercise 2	SSL/TLS Cryptography	233
Exercise 3	Secure Shell (SSH)	235
Exercise 4	Attack against RC5-CBC-PAD	236
Exercise 5	Wired Equivalent Privacy (WEP)	237
Exercise 6	Forging X.509 Certificates	238
Solutions		240
References		249

We expect the respect the readers to be constortable with basic facts of

the second of the second secon

Therefore I is dedicated to the prelimitory of the prelimitations of the contractions and the

and the contract of the contract of the contract the contract of the contract