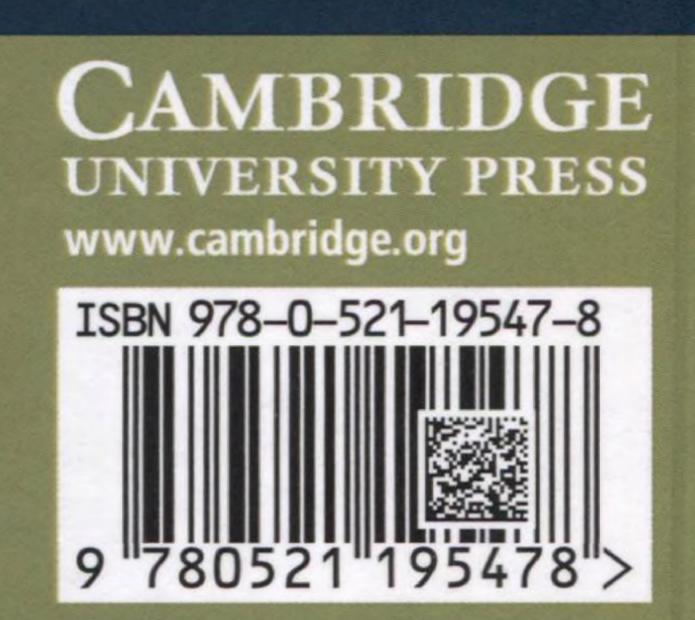
Burgess has written a truly remarkable monograph on effective field theories in modern theoretical physics. The array of applications discussed is staggering (drawn for example from particle physics, cosmology, nuclear physics and condensed matter physics). Even advanced practitioners can learn a lot from reading this text. I certainly did.

Mark Wise, California Institute of Technology


This monograph coherently unveils the full scope of effective field theories (EFTs) in action across vastly different areas of physics. It covers the fundamentals of EFTs and applications in particle physics, cosmology, and condensed matter physics with unique breadth and clarity. This book is recommended effectively to anyone who studies theoretical physics.

Sung-Sik Lee, Perimeter Institute for Theoretical Physics

This book, written by one of the world leaders in the field, is the most comprehensive and authoritative presentation of EFT applied to essentially all areas of physics. It illustrates, in a clear and detailed way, how EFT explains many apparently unrelated phenomena. This excellent book is strongly recommended to graduate students and professionals alike. It is an ode to the unity of physics.

Fernando Quevedo, University of Cambridge

C.P. BURGESS is a professor at both McMaster University and the Perimeter Institute for Theoretical Physics, and co-author of the book *The Standard Model: A Modern Primer*.

Cover Image: Full Frame Shot of Rippled Water

– Getty Image Library

Li	ist of	Illustrations	page xi
		Tables	xvii
	Preface		
		vledgements	xxi
		Part I Theoretical Framework	1
1	Deco	upling and Hierarchies of Scale	5
	1.1	An Illustrative Toy Model \$	6
		1.1.1 Semiclassical Spectrum	6
		1.1.2 Scattering	7
		1.1.3 The Low-Energy Limit	9
	1.2	The Simplicity of the Low-Energy Limit \$\dagger\$	9
		1.2.1 Low-Energy Effective Actions	10
		1.2.2 Why It Works	11
		1.2.3 Symmetries: Linear vs Nonlinear Realization	13
	1.3	Summary	16
	Exe	rcises	16
2	Effective Actions		18
	2.1	Generating Functionals – A Review ♥	18
		2.1.1 Connected Correlations	21
		2.1.2 The 1PI (or Quantum) Action*	22
	2.2	The High-Energy/Low-Energy Split \$	26
		2.2.1 Projecting onto Low-Energy States	26
		2.2.2 Generators of Low-Energy Correlations*	28
		2.2.3 The 1LPI Action	29
	2.3	The Wilson action \$	32
		2.3.1 Definitions	33
	2.4 Dimensional Analysis and Scaling \$		39
		2.4.1 Dimensional Analysis	39
		2.4.2 Scaling	43
	2.5	Redundant Interactions \$	44
	2.6 Summary		
	Exercises		49
2	Down	er Counting and Matching	51
)		Loops, Cutoffs and the Exact RG*	52
	3.1	3.1.1 Low-Energy Amplitudes	53
		J.I.I Low-Lifely Amplitudes	23

		3.1.2	Power Counting Using Cutoffs	54
		3.1.3	The Exact Renormalization Group	59
		3.1.4	Rationale behind Renormalization \$	63
	3.2	Power	Counting and Dimensional Regularization \$	64
		3.2.1	EFTs in Dimensional Regularization	65
		3.2.2	Matching vs Integrating Out	68
		3.2.3	Power Counting Using Dimensional Regularization	71
		3.2.4	Power Counting with Fermions	74
	3.3	The B	Big Picture \$	76
			Low-Energy Theorems	76
		3.3.2	The Effective-Action Logic \$	77
	3.4	Summ	nary	79
	Exe	cises		79
4	Symr	netries		82
	4.1	Symn	netries in Field Theory	82
		4.1.1	Unbroken Continuous Symmetries	84
		4.1.2	Spontaneous Symmetry Breaking	87
	4.2	Linear	r vs Nonlinear Realizations \$	90
		4.2.1	Linearly Realized Symmetries	91
		4.2.2	Nonlinearly Realized Symmetries	93
		4.2.3	Gauge Symmetries	99
	4.3	Anom	naly Matching*	105
		4.3.1	Anomalies♡	105
		4.3.2	Anomalies and EFTs	108
	4.4	Summ	nary	113
	Exe	cises		113
5	Boundaries			116
	5.1	'Induc	ced' Boundary Conditions	116
	5.2	The L	ow-Energy Perspective	119
	5.3	Dynar	mical Boundary Degrees of Freedom	122
	5.4	Sumn	nary	123
	Exe	rcises		124
6	Time	-Depend	dent Systems	126
	6.1	Samp	le Time-Dependent Backgrounds \$	126
		6.1.1	View from the EFT	128
	6.2	EFTs	and Background Solutions \$	129
		6.2.1	Adiabatic Equivalence of EFT and Full Evolution	129
		6.2.2	Initial Data and Higher-Derivative Instabilities*	132
	6.3 Fluctuations about Evolving Backgrounds*			137
		6.3.1	Symmetries in an Evolving Background	138
		6.3.2	Counting Goldstone States and Currents*	141
	6.4	Summ	nary	144
	Exercises			145

			Part II Relativistic Applications	147
7	Conceptual Issues (Relativistic Systems)			151
			ermi Theory of Weak Interactions	151
			Properties of the W Boson	151
			Weak Decays	153
	7.2		tum Electrodynamics	155
		7.2.1	Integrating Out the Electron	156
		7.2.2	$E \gg m_e$ and Large Logs*	162
			Muons and the Decoupling Subtraction Scheme*	164
		7.2.4		167
	7.3	Photo	ns, Gravitons and Neutrinos	169
		7.3.1	Renormalizable Interactions \$	169
		7.3.2	Strength of Non-renormalizable Interactions \$	171
		7.3.3	Neutrino-Photon Interactions*	173
	7.4	Bound	dary Effects	177
		7.4.1	Surfaces between Media	178
		7.4.2	Casimir Energies*	182
	7.5	Sumn	nary	185
	Exe	rcises		186
8	QCD and Chiral Perturbation Theory			188
	8.1 Quantum Chromodynamics*			188
		8.1.1	Quarks and Hadrons	188
		8.1.2	Asymptotic Freedom	190
		8.1.3	Symmetries and Their Realizations	192
	8.2		l Perturbation Theory	195
		8.2.1	Nonlinear Realization \$	195
		8.2.2	Soft-Pion Theorems*	199
		8.2.3	Including Baryons	203
		8.2.4	Loops and Logs \$	205
	8.3	Sumn	nary	208
	Exe	rcises		209
9	The Standard Model as an Effective Theory			
	9.1	Partic	le Content and Symmetries	213
		9.1.1	The Lagrangian	215
		9.1.2	Anomaly Cancellation*	218
	9.2	Non-r	renormalizable Interactions	221
		9.2.1	Dimension-Five Interactions	222
		9.2.2	Dimension-Six Interactions	224
	9.3	Natur	alness Issues*	226
		9.3.1	Technical and 't Hooft Naturalness \$	226
		9.3.2	The Electroweak Hierarchy Problem	231
		9.3.3	The Cosmological Constant Problem	236
	9.4	Sumn	nary	238
	Exe	rcises		239

10	General Relativity as an Effective Theory	241
	10.1 Domain of Semi-Classical Gravity \$	243
	10.2 Time-Dependence and Cosmology*	247
	10.2.1 Semiclassical Perturbation Theory	249
	10.2.2 Slow-Roll Suppression	252
	10.3 Turtles All the Way Down?*	257
	10.3.1 String Theory	257
	10.3.2 Extra Dimensions	264
	10.4 Summary	269
	Exercises	270
	Part III Nonrelativistic Applications	273
11	Conceptual Issues (Nonrelativistic Systems)	277
	11.1 Integrating Out Antiparticles \	277
	11.2 Nonrelativistic Scaling \$	280
	11.2.1 Spinless Fields	280
	11.2.2 Spin-Half Fields	282
	11.3 Coupling to Electromagnetic Fields*	284
	11.3.1 Scaling	285
	11.3.2 Power Counting	289
	11.4 Summary	293
	Exercises	294
12	Electrodynamics of Nonrelativistic Particles	296
	12.1 Schrödinger from Wilson	296
	12.1.1 Leading Electromagnetic Interactions	296
	12.1.2 Matching	298
	12.1.3 Thomson Scattering	306
	12.2 Multiple Particle Species*	307
	12.2.1 Atoms and the Coulomb Potential	309
	12.2.2 Dipole Approximation	311
	12.2.3 HQET	314
	12.2.4 Particle-Antiparticle Systems	318
	12.3 Neutral Systems	326
	12.3.1 Polarizability and Rayleigh Scattering	326
	12.3.2 Multipole Moments	330
	12.4 Summary	332
	Exercises	333
13	First-Quantized Methods	335
	13.1 Effective Theories for Lumps \$	336
	13.1.1 Collective Coordinates	337
	13.1.2 Nonlinearly Realized Poincaré Symmetry*	340
	13.1.3 Other Localized Degrees of Freedom	344
	13.2 Point-Particle EFTs	345
	13.2.1 Electromagnetic Couplings	346

	13.2.2 Gravitational Couplings	348	
	13.2.3 Boundary Conditions I	348	
	13.2.4 Thomson Scattering Revisited	352	
	13.3 PPEFT and Central Forces*	353	
	13.3.1 Boundary Conditions II	354	
	13.3.2 Contact Interaction	359	
	13.3.3 Inverse-Square Potentials: Fall to the Centre	365	
	13.3.4 Nuclear Effects in Atoms	370	
	13.4 Summary	380	
	Exercises	381	
	Part IV Many-Body Applications	387	
14	Goldstone Bosons Again	391	
	14.1 Magnons \$	391	
	14.1.1 Antiferromagnetism	392	
	14.1.2 Ferromagnetism	397	
	14.1.3 Physical Applications	401	
	14.2 Low-Energy Superconductors*	403	
	14.2.1 Implications of the Goldstone Mode	404	
	14.2.2 Landau-Ginzburg Theory	410	
	14.3 Phonons*	413	
	14.3.1 Goldstone Counting Revisited	413	
	14.3.2 Effective Action	415	
	14.3.3 Perfect Fluids	418	
	14.4 Summary	420	
	Exercises	421	
15	Degenerate Systems	423	
	15.1 Fermi Liquids \$	426	
	15.1.1 EFT Near a Fermi Surface	426	
	15.1.2 Irrelevance of Fermion Self-Interactions	428	
	15.1.3 Marginal Interactions	433	
	15.2 Superconductivity and Fermion Pairing*	436	
	15.2.1 Phonon Scaling	436	
	15.2.2 Phonon-Coulomb Competition	441	
	15.3 Quantum Hall Systems*	445	
	15.3.1 Hall and Ohmic Conductivity	445	
	15.3.2 Integer Quantum Hall Systems	448	
	15.3.3 Fractional Quantum Hall Systems	452	
	15.4 Summary	457	
	Exercises	458	
16	EFTs and Open Systems		
	16.1 Thermal Fluids	462	
	16.1.1 Statistical Framework [♥]	463	
	16.1.2 Evolution through Conservation	465	

16.2	Open Systems	467
	16.2.1 Density Matrices [♥]	468
	16.2.2 Reduced Time Evolution ⁵	470
16.3	Mean Fields and Fluctuations	472
	16.3.1 The Mean/Fluctuation Split [†]	473
	16.3.2 Neutrinos in Matter	476
	16.3.3 Photons: Mean-Field Evolution*	481
	16.3.4 Photons: Scattering and Fluctuations*	489
	16.3.5 Domain of Validity of Mean-Field Theory	494
16.4	Late Times and Perturbation Theory*	495
	16.4.1 Late-Time Resummation	496
	16.4.2 Master Equations	500
16.5	Summary	507
Exerc	ises	508
Appendix	A Conventions and Units	514
Appendix	B Momentum Eigenstates and Scattering	529
Appendix	C Quantum Field Theory: A Cartoon	539
Appendix	D Further Reading	577
Reference	ces	591
Index		636