
D-branes represent a key theoretical tool in the understanding of strongly coupled superstring theory and M-theory. They have led to many striking discoveries, including the precise microphysics underlying the thermodynamic behaviour of certain black holes, and remarkable holographic dualities between large-N gauge theories and gravity. This book provides a self-contained introduction to the technology of D-branes, presenting their development in a pedagogical manner. The introductory material is developed by first starting with the main features of string theory needed to get rapidly to grips with D-branes. Many advanced applications are covered, with discussions of open problems which could form the basis for other avenues of research. Suitable as a textbook in graduate courses on modern string theory and theoretical particle physics, it will also be an indispensable reference for seasoned practitioners. First published in 2003, this title has been reissued as an Open Access publication on Cambridge Core.

Clifford V. Johnson obtained his BSc in physics at Imperial College, University of London, and his PhD in theoretical physics from the University of Southampton. He won a 1992 Lindeman Fellowship and a 1992 SERC NATO Fellowship, and became a member of the School of Natural Sciences at the Institute for Advanced Study, Princeton. He then spent a year teaching and undertaking research at the Physics Department of Princeton University, and went on to hold a postdoctoral position at the Institute for Theoretical Physics, University of California, Santa Barbara. He was then Assistant Professor at the University of Kentucky and Reader in Theoretical Physics at Durham University. He is currently a professor in the Physics and Astronomy Department at the University of Southern California.

List	of inserts	xviii
Pref	face	xx
1	Overview and overture	1
1.1	The classical dynamics of geometry	1
1.2	Gravitons and photons	7
1.3	Beyond classical gravity: perturbative strings	11
1.4	Beyond perturbative strings: branes	15
1.5	The quantum dynamics of geometry	19
1.6	Things to do in the meantime	20
1.7	On with the show	22
2	Relativistic strings	24
2.1	Motion of classical point particles	24
	2.1.1 Two actions	24
	2.1.2 Symmetries	26
2.2	Classical bosonic strings	27
	2.2.1 Two actions	27
	2.2.2 Symmetries	29
	2.2.3 String equations of motion	30
	2.2.4 Further aspects of the two dimensional	
	perspective	31
	2.2.5 The stress tensor	35
	2.2.6 Gauge fixing	35
	2.2.7 The mode decomposition	37
	2.2.8 Conformal invariance as a residual symmetry	37
	2.2.9 Some Hamiltonian dynamics	38

2.3	Quantised bosonic strings	40
	2.3.1 The constraints and physical states	41
	2.3.2 The intercept and critical dimensions	42
	2.3.3 A glance at more sophisticated techniques	45
2.4	The sphere, the plane and the vertex operator	47
	2.4.1 States and operators	48
2.5	Chan-Paton factors	51
2.6	Unoriented strings	52
	2.6.1 Unoriented open strings	52
	2.6.2 Unoriented closed strings	54
	2.6.3 World-sheet diagrams	55
2.7	Strings in curved backgrounds	56
2.8	A quick look at geometry	61
	2.8.1 Working with the local tangent frames	61
	2.8.2 Differential forms	63
	2.8.3 Coordinate vs. orthonormal bases	65
	2.8.4 The Lorentz group as a gauge group	67
	2.8.5 Fermions in curved spacetime	68
	2.8.6 Comparison to differential geometry	68
3	A closer look at the world-sheet	70
3.1	Conformal invariance	70
	3.1.1 Diverse dimensions	70
	3.1.2 The special case of two dimensions	73
	3.1.3 States and operators	74
	3.1.4 The operator product expansion	75
	3.1.5 The stress tensor and the Virasoro	
	algebra	76
3.2	Revisiting the relativistic string	80
3.3	Fixing the conformal gauge	85
	3.3.1 Conformal ghosts	85
	3.3.2 The critical dimension	86
3.4	The closed string partition function	87
4	Strings on circles and T-duality	94
4.1	Fields and strings on a circle	94
	4.1.1 The Kaluza–Klein reduction	95
	4.1.2 Closed strings on a circle	96
4.2	T-duality for closed strings	99
4.3	A special radius: enhanced gauge symmetry	100
4.4	The circle partition function	103
4.5	Toriodal compactifications	104

T

Contents	xi

4.6	More on enhanced gauge symmetry	108
	4.6.1 Lie algebras and groups	108
	4.6.2 The classical Lie algebras	111
	4.6.3 Physical realisations with vertex operators	113
4.7	Another special radius: bosonisation	113
4.8	String theory on an orbifold	117
4.9	T-duality for open strings: D-branes	119
	4.9.1 Chan–Paton factors and Wilson lines	121
4.10	D-brane collective coordinates	123
4.11	T-duality for unoriented strings: orientifolds	125
5	Background fields and world-volume actions	129
5.1	T-duality in background fields	129
5.2	A first look at the D-brane world-volume action	131
	5.2.1 World-volume actions from tilted D-branes	133
5.3	The Dirac–Born–Infeld action	135
5.4	The action of T-duality	136
5.5	Non-Abelian extensions	136
5.6	D-branes and gauge theory	138
5.7	BPS lumps on the world-volume	138
6	D-brane tension and boundary states	141
6.1	The D-brane tension	142
	6.1.1 An open string partition function	142
	6.1.2 A background field computation	145
6.2	The orientifold tension	148
	6.2.1 Another open string partition function	148
6.3	The boundary state formalism	150
7	Supersymmetric strings	155
7.1	The three basic superstring theories	155
	7.1.1 Open superstrings: type I	155
	7.1.2 Closed superstrings: type II	160
	7.1.3 Type I from type IIB, the prototype orientifold	165
	7.1.4 The Green-Schwarz mechanism	166
7.2	The two basic heterotic string theories	169
	7.2.1 $SO(32)$ and $E_8 \times E_8$ from self-dual lattices	171
	7.2.2 The massless spectrum	172
7.3	The ten dimensional supergravities	174
7.4	Heterotic toroidal compactifications	176
7.5	Superstring toroidal compactification	178
7.6	A superstring orbifold: discovering the K3 manifold	179

	7.6.1	The orbifold spectrum	180
	7.6.2	Another miraculous anomaly cancellation	183
	7.6.3	The K3 manifold	184
	7.6.4 I	Blowing up the orbifold	185
	7.6.5 \$	Some other K3 orbifolds	189
	7.6.6 A	Anticipating D-manifolds	191
8		symmetric strings and T-duality	192
8.1		ity of supersymmetric strings	192
		Γ-duality of type II superstrings	192
		Γ-duality of type I superstrings	193
		Γ-duality for the heterotic strings	194
8.2		es as BPS solitons	195
8.3		-brane charge and tension	197
8.4		ientifold charge and tension	200
8.5	-	from type IIB, revisited	201
8.6	Dirac o	charge quantisation	201
8.7	D-bran	ies in type I	202
9	World	-volume curvature couplings	205
9.1	Tilted	D-branes and branes within branes	205
9.2	Anoma	alous gauge couplings	206
9.3	Charac	cteristic classes and invariant polynomials	210
9.4	Anoma	alous curvature couplings	216
9.5	A relat	tion to anomalies	218
9.6	D-bran	nes and K-theory	220
9.7	Furthe	r non-Abelian extensions	221
9.8	Furthe	r curvature couplings	222
10	The g	eometry of D-branes	224
10.1		at black holes in four dimensions	224
		A brief study of the Einstein-Maxwell system	224
		Basic properties of Schwarzschild	225
		Basic properties of Reissner-Nordstrom	228
		Extremality, supersymmetry, and the BPS	000
	101 =	condition	228
		Multiple black holes and multicentre solutions	232
		Near horizon geometry and an infinite throat	233
	10.1.7	Cosmological constant; de Sitter and anti-de	000
	10 1 0	Sitter	233
		de-Sitter spacetime and the sphere	234
	10.1.9	Anti-de Sitter in various coordinate systems	235

	10.1.10 Anti-de Sitter as a hyperbolic slice	236
	10.1.11 Revisiting the extremal solution	237
10.2	The geometry of D-branes	238
	10.2.1 A family of 'p-brane' solutions	238
	10.2.2 The boost form of solution	239
	10.2.3 The extremal limit and coincident D-branes	240
10.3	Probing p-brane geometry with Dp-branes	243
	10.3.1 Thought experiment: building p with Dp	243
	10.3.2 Effective Lagrangian from the world-volume	
	action	244
	10.3.3 A metric on moduli space	245
10.4	T-duality and supergravity solutions	246
	10.4.1 D(p+1) from Dp	246
	10.4.2 D(p-1) from Dp	248
11	Multiple D-branes and bound states	249
11.1	Dp and Dp' from boundary conditions	249
	The BPS bound for the $Dp-Dp'$ system	252
	Bound states of fundamental strings and D-strings	254
	The three-string junction	255
	Aspects of D-brane bound states	258
	11.5.1 0-0 bound states	258
	11.5.2 0–2 bound states	258
	11.5.3 0-4 bound states	259
	11.5.4 0–6 bound states	260
	11.5.5 0–8 bound states	260
12	Strong coupling and string duality	261
12.1	Type IIB/type IIB duality	261
	12.1.1 D1-brane collective coordinates	261
	12.1.2 S-duality and $SL(2,\mathbb{Z})$	263
12.2	SO(32) Type I/heterotic duality	264
	12.2.1 D1-brane collective coordinates	264
12.3	Dual branes from 10D string-string duality	265
	12.3.1 The heterotic NS-fivebrane	267
	12.3.2 The type IIA and type IIB NS5-brane	268
12.4	Type IIA/M-theory duality	271
	12.4.1 A closer look at D0-branes	271
	12.4.2 Eleven dimensional supergravity	271
12.5	$E_8 \times E_8$ heterotic string/M-theory duality	273
	M2-branes and M5-branes	276
	12.6.1 Supergravity solutions	276

	12.6.2 From D-branes and NS5-branes to M-branes and back	277
12.7	U-duality	278
14.1	12.7.1 Type II strings on T^5 and $E_{6(6)}$	278
	12.7.2 U-duality and bound states	279
	12.1.2 O-duality and bound states	210
13	D-branes and geometry I	282
13.1	D-branes as probes of ALE spaces	282
	13.1.1 Basic setup and a quiver gauge theory	282
	13.1.2 The moduli space of vacua	285
	13.1.3 ALE space as metric on moduli space	286
	13.1.4 D-branes and the hyper-Kähler quotient	289
13.2	Fractional D-branes and wrapped D-branes	291
	13.2.1 Fractional branes	291
	13.2.2 Wrapped branes	292
13.3	Wrapped, fractional and stretched branes	294
	13.3.1 NS5-branes from ALE spaces	295
	13.3.2 Dual realisations of quivers	296
13.4	D-branes as instantons	300
	13.4.1 Seeing the instanton with a probe	301
	13.4.2 Small instantons	305
13.5	D-branes as monopoles	306
	13.5.1 Adjoint Higgs and monopoles	309
	13.5.2 BPS monopole solution from Nahm data	311
13.6	The D-brane dielectric effect	314
	13.6.1 Non-Abelian world-volume interactions	314
	13.6.2 Stable fuzzy spherical D-branes	316
	13.6.3 Stable smooth spherical D-branes	318
14	K3 orientifolds and compactification	322
14.1	\mathbb{Z}_N orientifolds and Chan–Paton factors	322
14.2	Loops and tadpoles for ALE \mathbb{Z}_M singularities	324
	14.2.1 One-loop diagrams and tadpoles	324
	14.2.2 Computing the one-loop diagrams	325
	14.2.3 Extracting the tadpoles	330
14.3	Solving the tadpole equations	333
	14.3.1 T-duality relations	333
	14.3.2 Explicit solutions	334
14.4	Closed string spectra	336
14.5	Open string spectra	339
14.6	Anomalies for $\mathcal{N}=1$ in six dimensions	341

15	D-branes and geometry II	345
15.1	Probing p with $D(p-4)$	345
15.2	Probing six-branes: Kaluza-Klein monopoles	
	and M-theory	346
15.3	The moduli space of 3D supersymmetric gauge theory	348
15.4	Wrapped branes and the enhançon mechanism	352
	15.4.1 Wrapping D6-branes	353
	15.4.2 The repulson geometry	354
	15.4.3 Probing with a wrapped D6-brane	356
15.5	The consistency of excision in supergravity	360
15.6	The moduli space of pure glue in 3D	362
	15.6.1 Multi-monopole moduli space	363
16	Towards M- and F-theory	367
16.1	The type IIB string and F-theory	367
	16.1.1 $SL(2,\mathbb{Z})$ duality	368
	16.1.2 The (p,q) strings	369
	16.1.3 String networks	371
	16.1.4 The self-duality of D3-branes	373
	16.1.5 (p,q) Fivebranes	375
	16.1.6 $SL(2,\mathbb{Z})$ and D7-branes	376
	16.1.7 Some algebraic geometry	379
	16.1.8 F-theory, and a dual heterotic description	383
	16.1.9 (p,q) Sevenbranes	384
	16.1.10 Enhanced gauge symmetry and singularities	
	of K3	386
	16.1.11 F-theory at constant coupling	387
	16.1.12 The moduli space of $\mathcal{N}=2$ $SU(N)$ with $N_{\rm f}=4$	392
16.2	M-theory origins of F-theory	394
	16.2.1 M-branes and odd D-branes	396
	16.2.2 M-theory on K3 and heterotic on T^3	399
	16.2.3 Type IIA on K3 and heterotic on T^4	400
16.3	Matrix theory	400
	16.3.1 Another look at D0-branes	401
	16.3.2 The infinite momentum frame	402
	16.3.3 Matrix string theory	404
17	D-branes and black holes	409
17.1	Black hole thermodynamics	409
	17.1.1 The path integral and the Euclidean calculus	409
	17.1.2 The semiclassical approximation	411
	17.1.3 The temperature of black holes	412

17.2	The Euclidean action calculus	414
	17.2.1 The action for Schwarzschild	414
	17.2.2 The action for Reissner–Nordström	416
	17.2.3 The laws of thermodynamics	417
17.3	D=5 Reissner–Nordström black holes	418
	17.3.1 Making the black hole	420
	17.3.2 Microscopic entropy and a 2D field theory	425
	17.3.3 Non-extremality and a 2D dilute gas limit	427
17.4	Near horizon geometry	429
17.5	Replacing T^4 with K3	432
	17.5.1 The geometry	432
	17.5.2 The microscopic entropy	433
	17.5.3 Probing the black hole with branes	434
	17.5.4 The enhançon and the second law	437
18	D-branes, gravity and gauge theory	440
18.1	The AdS/CFT correspondence	441
	18.1.1 Branes and the decoupling limit	441
	18.1.2 Sphere reduction and gauged supergravity	443
	18.1.3 Extracts from the dictionary	446
	18.1.4 The action, counterterms, and the stress tensor	449
18.2	The correspondence at finite temperature	452
	18.2.1 Limits of the non-extremal D3-brane	452
	18.2.2 The AdS–Schwarzschild black hole in global coordinates	453
18.3	The correspondence with a chemical potential	455
	18.3.1 Spinning D3-branes and charged AdS black holes	455
	18.3.2 The AdS–Reissner–Nordström black hole	459
	18.3.3 Thermodynamic phase structure	459
18.4	The holographic principle	464
19	The holographic renormalisation group	467
	Renormalisation group flows from gravity	467
10.1	19.1.1 A BPS domain wall and supersymmetry	469
19.2	Flowing on the Coulomb branch	472
	19.2.1 A five dimensional solution	472
	19.2.2 A ten dimensional solution	475
	19.2.3 Probing the geometry	475
	19.2.4 Brane distributions	478
19.3	An $\mathcal{N} = 1$ gauge dual RG flow	480
	19.3.1 The five dimensional solution	482

	19.3.2 The ten dimensional solution	486
	19.3.3 Probing with a D3-brane	487
	19.3.4 The Coulomb branch	488
	19.3.5 Kähler structure of the Coulomb branch	489
19.4	An $\mathcal{N}=2$ gauge dual RG flow and the enhançon	494
	19.4.1 The five dimensional solution	494
	19.4.2 The ten dimensional solution	498
	19.4.3 Probing with a D3-brane	499
	19.4.4 The moduli space	500
19.5	Beyond gravity duals	502
20	Taking stock	504
	References	510
	Index	529