Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research.

Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N = 4 super Yang-Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3d Chern-Simons-matter theories, and color-kinematics duality and its connection to "gravity = (gauge theory)²."

Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material.

Henriette Elvang is Associate Professor in the Department of Physics, University of Michigan. She has worked on various aspects of high energy theoretical physics, including black holes in string theory, scattering amplitudes, and the structure of gauge theories.

Yu-tin Huang is Assistant Professor at National Taiwan University. He is known for his work in the study of scattering amplitudes beyond four dimensions, most notably in 3-dimensional Chern–Simons matter theory.

"In recent years, a series of surprising insights and new methods have transformed the understanding of gauge and gravitational scattering amplitudes.

These advances are important both for practical calculations in particle physics, and for the fundamental structure of relativistic quantum theory. Elvang and Huang have written the first comprehensive text on this subject, and their clear and pedagogical approach will make these new ideas accessible to a wide range of students."

Joseph Polchinski, University of California

"This book provides a much-needed text covering modern techniques that have given radical new insights into the structure of quantum field theory. It gathers together a very large body of recent literature and presents it in a coherent style. The book should appeal to the wide body of researchers who wish to use quantum field theory as a tool for describing physical phenomena or who are intending to gain insight by studying its mathematical structure."

Michael B. Green, University of Cambridge

Pre	eface pa	ge xi
1	Introduction	1
	Part I Trees	
2	Spinor helicity formalism	15
	2.1 Dirac spinors	15
	2.2 Spinor helicity notation	16
	2.3 Examples from Yukawa theory	19
	2.4 Massless vectors and examples from QED	25
	2.5 Yang–Mills theory, QCD, and color-ordering	30
	2.6 Little group scaling	37
	2.7 MHV classification	41
	2.8 Analytic properties of tree amplitudes	44
3	On-shell recursion relations at tree-level	50
	3.1 Complex shifts and Cauchy's theorem	50
	3.2 BCFW recursion relations	53
	3.3 When does it work?	62
	3.4 MHV vertex expansion (CSW)	65
	Further reading * sebutifights V HMM amon-a 1,8.0	
4	Supersymmetry	69
	$4.1 \ \mathcal{N} = 1 \ \text{supersymmetry: chiral model}$	69
	4.2 Amplitudes and supersymmetry Ward identities	73
	4.3 $\mathcal{N} = 1$ supersymmetry: gauge theory	75
	4.4 $\mathcal{N}=4$ SYM: on-shell superspace and superamplitudes	77
	4.5 Super-BCFW and all tree-level amplitudes in $\mathcal{N}=4$ SYM	86
	4.5.1 MHV superamplitude from super-BCFW	87
	4.5.2 NMHV superamplitude and beyond	89
5	Symmetries of $\mathcal{N}=4$ SYM	95
	5.1 Superconformal symmetry of $\mathcal{N}=4$ SYM	95
	5.2 Twistors	99
	5.3 Emergence of dual conformal symmetry	102
	5.4 Momentum twistors	107

Part II Loops

6	Loop amplitudes and generalized unitarity	117					
	6.1 UV and IR divergences	119					
	6.2 Unitarity method	124					
	6.3 1-loop amplitudes from unitarity	126					
	6.4 1-loop amplitudes in planar $\mathcal{N} = 4$ SYM	132					
	6.5 Higher-loop amplitudes in planar $\mathcal{N} = 4$ SYM	135					
7	BCFW recursion for loops	138					
	7.1 Loop-integrands	138					
	7.2 BCFW shift in momentum twistor space	141					
	7.3 Momentum twistor BCFW at tree-level	145					
	7.4 Momentum twistor BCFW for planar loop-integrands	149					
	7.5 Example: 4-point 1-loop amplitude from recursion	156					
	7.6 Higher loops	159					
8	Leading Singularities and on-shell diagrams	161					
	8.1 1-loop Leading Singularities	162					
	8.2 2-loop Leading Singularities	172					
	8.3 On-shell diagrams	173					
	Part III Topics						
9	Grassmannia	181					
	9.1 Yangian invariance and cyclic symmetry	182					
	9.2 The Grassmannian	185					
	9.3 Yangian invariants as residues in the Grassmannian	188					
	9.3.1 MHV amplitudes	188					
	9.3.2 6-point NMHV amplitudes	190					
	9.4 From on-shell diagrams to the Grassmannian	194					
10	Polytopes	200					
	10.1 Volume of an <i>n</i> -simplex in \mathbb{CP}^n	202					
	10.2 NMHV tree superamplitude as the volume of a polytope	206					
	10.3 The boundary of simplices and polytopes	209					
	10.4 Geometric aftermath	213					
11	Amplitudes in dimensions $D \neq 4$						
	11.1 Helicity formalism in $D \neq 4$	216					
	11.2 Scattering amplitudes in $D=6$	219					
	11.3 Scattering amplitudes in $D=3$	222					
	1131D = 3 kinematics	222					

		11.3.2	3d SYM and Chern-Simons theory	224		
			Special kinematics and poles in amplitudes	225		
		11.3.4	D=3 superconformal algebra	226		
		11.3.5	$\mathcal{N}=8$ superconformal theory: BLG	228		
			$\mathcal{N}=6$ superconformal theory: ABJM	230		
		11.3.7	BCFW recursion in 3d	233		
		11.3.8	ABJM and dual conformal symmetry	238		
		11.3.9	Loops and on-shell diagrams in ABJM	239		
		11.3.10	The orthogonal Grassmannian	245		
			used to modern research on southering naphrodes in oddition to			
12	Super	gravity a	mplitudes	249		
	12.1	Perturba	ative gravity	249		
	12.2	Supergr	avity	254		
	12.3	Superan	nplitudes in $\mathcal{N}=8$ supergravity	256		
	12.4	Loop an	nplitudes in supergravity	259		
	12.5	$\mathcal{N}=8$	supergravity: loops and counterterms	261		
	12.6	Supergr	ravity divergences for various \mathcal{N}, L , and D	269		
13	A colo	rful duali	your hands. Hocause the authors were not writing a book, they a tythe work: Their hepe is that you will enjoy a too and that you wi			
	13.1	The cole	or-structure of Yang-Mills theory	273		
	13.2	Color-k	inematics duality: BCJ, the tree-level story	276		
			inematics duality: BCJ, the loop-level story	283		
			1-loop 4-point $\mathcal{N} = 4$ SYM	284		
			2-loop 4-point $\mathcal{N} = 4$ SYM	285		
		13.3.3	3-loop 4-point $\mathcal{N} = 4$ SYM	286		
		13.3.4	Summary	288		
	13.4	Implica	tions for UV behavior of supergravity	288		
	13.5	Extension	ons	293		
14	Furth	er reading				
	elpful comments/subjections/corrections = Indy Recker Timothy Olson, Sam-					
App	endix	Convent	ions for 4d spinor helicity formalism	297		
				VIDLE		
	ference	es				
Inc	lex			319		