A Simple Non-Euclidean Geometry and Its Physical Basis

This is an introduction to a large and important part of geometry, specifically plane Galilean and Galilean inversive geometry, with plane Euclidean and Euclidean inversive geometry providing both background and contrast. The subject is accessible to anyone versed in elementary mathematics. Calculus, for example, is not required. The book is addressed mainly to students of mathematics, physics, and mathematical education.

Introduction	1
 What is geometry? What is mechanics? 	1 15
Chapter I. Distance and Angle;	
Triangles and Quadrilaterals	33
3. Distance between points and angle between lines	33
4. The triangle	47
5. Principle of duality; coparallelograms and cotrapezoids	54
6. Proofs of the principle of duality	67
Chapter II. Circles and Cycles	77
7. Definition of a cycle; radius and curvature	77
8. Cyclic rotation; diameters of a cycle	91
9. The circumcycle and incycle of a triangle	104
10. Power of a point with respect to a circle or cycle; inversion	1 117
Conclusion	158
11. Einstein's principle of relativity and Lorentz transformation	ns 158
12. Minkowskian geometry	174
13. Galilean geometry as a limiting case of Euclidean and Minkowskian geometry	201
Supplement A. Nine plane geometries	214