	PREFACE	vii
	NOTATION	ix
I.	SOME FUNDAMENTAL NOTIONS OF REAL-VARIABLE THEORY	3
1.	The maximal function	4
2.	Behavior near general points of measurable sets	12
	Decomposition in cubes of open sets in \mathbb{R}^n	16
	An interpolation theorem for L^p	20
5.	Further results	22
II.	SINGULAR INTEGRALS	26
1.	Review of certain aspects of harmonic analysis in \mathbb{R}^n	27
	Singular integrals: the heart of the matter	28
	Singular integrals: some extensions and variants of the	
	preceding	34
4.	Singular integral operators which commute with dilations	38
	Vector-valued analogues	45
	Further results	48
III.	RIESZ TRANSFORMS, POISSON INTEGRALS, AND SPHERICAL HARMONICS	54
1	The Riesz transforms	54
	Poisson integrals and approximations to the identity	60
	Higher Riesz transforms and spherical harmonics	68
	Further results	77
18	anakamal amomali la minagail gashesala anac	3
IV.	THE LITTLEWOOD-PALEY THEORY AND MULTIPLIERS	81
1.	The Littlewood-Paley g-function	82
2.	The function g_{λ}^*	86
3.	Multipliers (first version)	94

	Application of the partial sums operators The dyadic decomposition	103
	The Marcinkiewicz multiplier theorem	108
	Further results	112
V.	DIFFERENTIABILITY PROPERTIES IN TERMS OF FUNCTION SPACES	116
	Riesz potentials	117
	The Sobolev spaces, $L_k^p(\mathbb{R}^n)$	121
	Bessel potentials	130
	The spaces Λ_{α} of Lipschitz continuous functions	141
	The spaces $\Lambda_{\alpha}^{p,q}$	150
	Further results	159
VI.	Extensions and Restrictions	166
1.	Decomposition of open sets into cubes	167
	Extension theorems of Whitney type	170
3.	Extension theorem for a domain with minimally smooth	
	boundary	180
4.	Further results	192
VII.	RETURN TO THE THEORY OF HARMONIC FUNCTIONS	196
1.	Non-tangential convergence and Fatou's theorem	196
2.	The area integral	205
	Application of the theory of H^p spaces	217
4.	Further results	235
/III.	DIFFERENTIATION OF FUNCTIONS	240
1.	Several notions of pointwise differentiability	241
	The splitting of functions	246
	A characterization of differentiability	250
	Desymmetrization principle	257
	Another characterization of differentiability	262
6.	Further results	266
	APPENDICES	
A.	Some Inequalities	271
	The Marcinkiewicz Interpolation Theorem	272
C.	Some Elementary Properties of Harmonic Functions	274
D.	Inequalities for Rademacher Functions	276
	BIBLIOGRAPHY	279
	INDEX	289