
Contents

1 Introduction 1
1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9

A brief history of computing 2
% A 7 X 2 • P $What is computer science? 4
A brief tour of computer hardware 6
: 4. 2 " X : A - , ex he CPU /, Memory , Secondary storage 8, I/O devices 8
Algorithms9
Programming languages and compilation 10
Programming errors and debugging 12
Software maintenance 13
The importance of software engineering 14
Some thoughts on the C programming language 15
Summary 16
REVIEW QUESTIONS 17

PART ONE
The Basics of C Programming 19

2 Learning by Example 21
2.1 The "Hello world" program 22

Comments 22. Library inclusions 23, The main program 24
2.2 A program to add two numbers 26

The input phase 28, The computation phase 30, The output phase 30
2.3 Perspectives on the programming process 32
2.4 Data types 33

CE ,. * 3a 1 S3 *w >e $C *XA2 #‘ • /4 2% X: ty: 2% 09 AN Ahi, 1/ Y & : oonng Don 000 064 JHinG 0010 32

2.5 Expressions 37
Constants 38, Variables 39, Assignment statements 41, Operators
and operands 43 Combining integers and Hogting-point numbers 44
Integer division and the remainder operator 45, Precedence 45,
Applying precedence rules 48, Type conversion 48

Summary 51
REVIEW QUESTIONS 52
PROGRAMMING EXERCISES 55

** uo.novetb.

3 Problem Solving 59
3.1 Programming idioms and paradigms 60

Shorthand assignment idioms 61, Increment and decrement operators 62
3.2 Solving problems on a larger scale 63
3.3 Control statements 65

The repeat-N-times idiom 65, Iteration and loops 67, Index
variables 67, The importance of initialization 69, The read-until-sentinel
idiom 69, Building a more practical application 71, Conditional
execution and the if statement 74

3.4 An exercise in debugging 76
3.5 Formatted output 80

Format codes for printf 82, Controlling spacing, alignment,
and precision 83

3.6 Crafting a program 86
Programming style 86, Designing for change 88,
The #define mechanism 89 |

Summary 89
REVIEW QUESTIONS 91
PROGRAMMING EXERCISES 93

4 Statement Forms 99
4.1 Simple statements 100.

Embedded assignments 102, Multiple assignments 102, Blocks 103
4.2 Control statements 104
4.3 Boolean data 105

Relational operators 106, Logical operators 107, Short-circuit
evaluation 109, Flags 1 10, Avoiding redundancy in Boolean
expressions 1 10, An example of Boolean calculation 1 11

4.4 The if statement 112
Single-line if statements 114, Multiline if statements 114,
The if-else statement 114, Cascading if statements 1 15,
The ?: operator I 15

4.5 The switch statement 117
4.6 The while statement 119

Using the while loop 120, Infinite loops 122
Solving the loop and a-half problem 123

XXI

4.7 The for statement 125
Nested for loops 126 The relationship hahrsan For * 08 484 3.724 : A 52 158 1323528 MC5YC 3 40%

and while | 29, Using for with Hoating-point data .29

Summary 131
REVIEW QUESTIONS 132
PROGRAMMING EXERCISES 133

5 Functions
5.1

5.4

5.5
5.6

Using library functions 138
Function declarations 140
Writing your own functions 141
The return statement 142, Putting functions together with main

__... 3. Functions involving internal control structures 143
Functions that return nonnumeric values 146. Predicate functions 14
A predicate function to test for string equality 1 49
Mechanics of the function-calling process 150
Parameter passing 151, Calling functions from within
other functions 156
Procedures 163
Stepwise refinement 165
Starting at the top 166, Implementing PrintCalendar 167 : , X , , * A $: C ,
$mnlemenling PY 1 ne Ca 1 endsrMonth : 0/ € ombletno the ting

pieces 1/1 _ --
Summary 176
REVIEW QUESTIONS 177
PROGRAMMING EXERCISES 178

6 Algorithms
6.1 Testing for primality 186

- $ - . . - € % 77 $ 2 2 3 . .simple version of IsPrime 187, Verifying that a strategy represen
an algorithm 187, Demonstrating the correctness of the IsPrime
algorithm 188, improving algorithmic efficiency I 89, Choosing
between alternative implementations 192 I|

6.2 Computing the greatest common divisor 193
rute-force algorithms 194 Euclid’s algorithm 195, Defending the

correctness of Euclid’s algorithm 195, Comparing the efficiency of th
con L 107 iOCD algorithms 19/

6.3 Numerical algorithms 197
r . IS . 100 D: I 500Successive approximation 198, Reporting errors 200

0.4 Series expansion 201
Zeno 5 paradox 20 | , Using 0 series expansion for the square
root function 203, The Taylor series expansion for approximating
a square root 204. implementing the Iaylor series approximation 2
Staying within the radius of convergence 207

6.5 Specifying the size of numeric types 210
Integer types 210, Unsigned types 211. Floating-point types 212

Summary 212 - | -
REVIEW QUESTIONS 213
PROGRAMMING EXERCISES 214

PART TWO
Libraries and Modular Development 219

7 Libraries and Interfaces:
A Simple Graphics Library 221

7.1 The concept of an interface 222
Interfaces and header files 224

7.2 An introduction to the graphics library 225
The underlying model for graphics.h 225, The functions in the
graphics.h interface 227, Initializing the package 231, Drawing
straight lines 231, Drawing circles and arcs 233, Obtaining informa

C • • • * v ’ - ■ C had

tion about the graphics window 235
7.3 Building your own tools 235

annEnC Fy 3y / 374 : MATninC : TYAN ant CTC YC 422 У v^* 3E 323 12 5.97 2.3.99 42 v 6 %8, 222 $* W XA&. SR W, 56.2 CSA 3.27.8.7 k 3. So V * • :

Switching between absolute and relative coordinates 239,
The advantages of defining procedures 240

7.4 Solving a larger problem 240
Using stepwise refinement 241, implementing the DrawHouse
procedure 242, Looking for common patterns 243, Finishing the
decomposition 245

Summary 250
REVIEW QUESTIONS 251
PROGRAMMING EXERCISES 252

8 Designing Interfaces: A Random Number Library 259
8.1 Interface design 260

The importance of a unifying theme 261, Simplicity and the principle
of information hiding 261 ! Meeting the needs of your clients 263,
The advantages of general tools 203, The value of stability 204

8.2 Generating random numbers by computer 265
Deterministic versus nondeterministic behavior 265, Random versus
_.DAE1|i pseudorandom numbers 205, Generating pseudorandom numbers
in ANSI C 200, Changing the range of random numbers 207
I,1 L 4-98Oenerolizing the problem 2/2

8.3 Saving tools in libraries 274******* •
The contents of on interface 273, Writing the random.b interface 2/0,
The random.c implementation 277, Constructing 0 client program 278,
Initializing the random number generator 280

xxiii

8.4 Evaluating the design of the random.h interface 283
% 3TCC1 no 10R0C InnruorE /82 ETT RSTE 01 TrYrdhe

• —80 0377 ositi 4 JA : • w$ -• < ! . 2 214822 • W. 4/5 : 9.3 ? - : % 1.7 5233 .. 3.4 / A278 3.24 3%,

02 : : :. : • 6 , / A : .AM 1 / X h : C/ E. : 7% PCRCCEF • Dae .4% grkg 4712rTzyng ‘/ - A / syys yy*
w6 S: : A X, : N, X42 3 : 7 2235AE 222 4852 22 21200 : 2%421 X. e ve vwevt issCes .i y, .

the implementation of the pmnciom-nimbner TyksGa 286

8.5 Using the random-number package 286
Summary 290

2 gone any. 8 2 2 3REVIEW QUESTIONS 2919k RA ? 5.0. ° han. Sor 5 Yea XXX Alien • 2

PROGRAMMING EXERCISES 292

Strings and Characters .
O 1 The principle of enumeration 302

n . ST : . - 3 : X - KcrenT 00 - imcsoticn n SIC122 thA mnrh 112 X 1.4 Keripepn F c A = X * X F w

enumeration types as integers 304 Defining new enumeration
Types 304. Operations on enumeration types 307 Scalar types .

9.2 Characters 308
17 01001 K.O ChaX *)X :hoMX 1: core .3.) X (heester 000 cHonis $ S27 393/ SASAS. 47 5325, 7 S-K.7 3867

: 2 1 SET

2-23V59-3Y932352-575 295 2275 17957*5 08 239-27X75233 Y a 98 2 67A V7V6X 500500 ,2 (V 9439 X 2
327285 v83 71 2X2/19 172X *5X82X7 v 3, AVXX71 13.1/1 VS 00%02 w 3

9 2 Strings as abstract data 316
$: : • A : 2 € 2 7932% :CEVATAC crstrnciions % • / iconAn 24 Crstrio Rnim 4IV

9.4 The strlib.h interface 319■ **** ,_A: : -

: 170090082552/5 222% 12526295 V*. /4 C2y,y98 A 7 055080)9529 /7/40XP2SPX Py/gYs
C68:35158246 :12%.32.225435E 4J521172. CCR 5:0142512 633.31

, * 421 2% - es g 22 . :
XX 2 82 v. . :K.L.AIC P.25SSS V* : < % 5957.258 A % 2 %7X7 V 458 &E 3572

to 770237223/X 475,XXPAX er 0.9 7-47322/2. & / 9 X (1372 W /2 041**/ > & wrer gHy 50 /2yer
Bas 3 3 * • - C hr . v, kg .V Ou V A e V. 222 9 224 972 v - >VA 00 26 42 A C

2 3 v ‘ V v •

SACECDINS A Uhin n string % / (CIA convoninn 1// Isimenn
.see ri. ia ... X 1=3 686

2* CSP: C: CAYS X 3P 32 1830312973 / /Y 7r2 : % P th / cSSYCA / *453

Summary 33 1 -
REVIEW QUESTIONS 332
PROGRAMMING EXERCISES 334

4, 9% 2 2 2 2 9009. 8 ■10 Modular Development

.1 Pig Latin- a case study in modular development 342

Applying top-down design 342 Using pseudocode 343
Impiemer 11 ansiateune 344, IOKIT 0 spaces ono OUT CTUOT

besigniTa HE oKel SeOnne 0A0. connpent the i icidCCli
-• ? : sge r . 33 - : . SCn
ST: Did: ClO 03 : . <1 7 ODCCITYT 00 IF C SCON C Thouue HOT : QCC 4

10.2 Maintaining internal state within a module 352
2% : : . SC’ 73 $? * : - :?: 2/32: 5.391212 2 X 23323 3432*332070 72 2:037391 3218/321 317173/12372 < X

carne FiCrIA C (1 niclzinc COTORLSX53A YL: 32x/CC 49::X.717 UXX2% XXWX, 25131252184585-8 XAX/XVA3

V011inDes % 3 / Prvete nunchons 1/

3 Implementing the scanner abstraction 359

Summary 366
REVIEW QUESTIONS 366
PROGRAMMING EXERCISES 367

PART THREE
Compound Data Types 373

11 Arrays 375
11.1

11.2

11.3

11.4
11.5

11.6

Introduction to arrays 376
Array declaration 377, Array selection 378, Example of □
simple array 379. Changing the index range 381
Internal representation of data 382
Bits, bytes, and words 382, Memory addresses 383,
The sizeof operator 385, Allocation of memory to variables 385,
References to elements outside the array bound 386
Passing arrays as parameters 388
Generalizing the number of elements 390, The mechanics of array
parameter transmission 392, Implementing PrintIntegerArray and
2n.A 2w076--7y 3109359 4 21 173 5123713257999979 LyXX • re o62003 3 XX ___2. edond S —27: boX 2hw : A > : л1 % 3 Sita i-k 32322 3 PXK** { 2* : : :4 ease) 130 : ware 2 ; 0 16 .$21 27 Yu * .X 4% Sv 99 • vol A..Y w 4 * .C * 1201 523,3 4232 5 X 39u 7 2u X 6 a say aT Veal 4 л b. 4 2., 2 0 G Verra, 1 ‘ . 2 ‘
implementing Swanl NT orark : amonr л ^V /

Using arrays for tabulation 398
Static initialization of arrays 404
Automatic determination of array size 408, Determining the size of an
initialized array 409 Initialized arrays and scalar Spes 409
Multidimensional arrays 410
3 , Far 3. - 8 .2 6 13
Fossing multidimensional anOVs to ninctions 4 : :HeSutiSMX 2128123533 2022-2 567 562 399 2.7 X S273C7 >:.

Initializing multidimensional arrays 412

Summary 413
REVIEW QUESTIONS 414
PROGRAMMING EXERCISES 416

12 Searching and Sorting 425
2 23 3 / x 2*212.1 Searching 420

Searching in an integer array 426, A more sophisticated example
of searching 429, Linear search 43 1. Binary search 433, Relative
efficiency of the search algorithms 435

12.2 Sorting 43 7 |
Sorting an integer array 437, The selection sort algorithm 438,
Evaluating the efficiency of selection sort 442, Measuring the running
time of a program 442, Analyzing the selection sort algorithm 445

Summary 446
REVIEW QUESTIONS 446
PROGRAMMING EXERCISES 447

13 Pointers 453

13.1 Using addresses as data values 455
13.2 Pointer manipulation in C 457

Declaring pointer variables in C 457. The fundamental
pointer operations 458. The special pointer NULL 461

XX •

13.3 Passing parameters by reference 461
Designing a Swapinteger function 405. Using cal by reference to

tiple results 400, The danger of overusing call by reference 46
13.4 Pointers and arrays 468

Pointer arithmetic 409 New capabilities of the ++ and - - operators
73, incrementing and decrementing pointers 475, The relationship

between pointers and arrays 4/0
13.5 Dynamic allocation 478

3822 3 T2S % 40, % 36 72% : X PCPY:2 PAPAY /4 32 “re ■ 1 : EXSA/S/VB . Asyy 040 € 4%

malloc 481, Freeing memory 481

Summary 482
REVIEW STIONS 483SCVILYY UCOUOTNO 400

PROGRAMMING EXERCISES 486

4 Strings Revisited
14.1 Conceptual representations of the type string 492

Strings as arrays 491, Strings as pointers 495. Strings as an
abstract type 496, String parameters 497 String variables 497
Differences between pointer and array variables 499. Deciding an
a strategy for string representation 502

14.2 The ANSI string library 502
The gr rent hinction 5 14 The gtrney huinction 57 23: v 4 WY :RE ** * wv : Et PwY6 A3WY W at:: : vV/7 2
: NA SF PER $- XFyga t 1 met on $ JX 1NA Xyy iarm € + YCTES6 45- $we 3. * •.SI.8 • 2 & s. %s 23% ‘V*:%: 1 V• w* XV. <.$ 2 & 3. • &. 81, • V4. :

uwok: UE 3 • uid ... V 2. > TLCIL • C103

strstr functions 5 10. An application of the ANSI string functions
14.3 Implementing the strlib library 511

implementing the pass through functions 51 I. Implementing the
4. &. V CHUABV : 1823 CAB 13 2 1 4 8

Summary 516
REVIEW QUESTIONS 517
PROGRAMMING EXERCISES 517

X 2 : * 9965 gyns,15 Files 52
15.1 Text files 524
15.2 Using files in C 525

Declaring a FILE * variable 520. Opening a 520. Performing
172 % NAY : rsa

15 3 Character I/O 529 $ 2 9 be hour 3 63 398863 / o 06 V

I F712971 2° 13.30 ' < : WETOYRES g MMYSTBATK IN THCA TEY3: 1:122 % 6,

15.4 Line-oriented I/O 536

X

XXVI

15.5 Formatted I/O 539
The three forms of nrintf 539 The scant functions 639 : 3 I 45 VAX 72 53207 42 2.0 964 AV in 40 8.3 * See 06.35 , A45 583 452 97 6 • $

Reading strings with scant 541, An example of formatted I/O 543,
Limitations on the use of scant 546

Summary 547
REVIEW QUESTIONS 548
PROGRAMMING EXERCISES 549

16 Records 557
16.1 The concept of the data record 558
16.2 Using records in C 559

Defining a new structure type 560, Declaring structure variables 560,
Record selection 561, Initializing records 561, Simple records 562

16.3 Combining records and arrays 563
16.4 Pointers to records 566

Defining a pointer-to-record type 566, Allocating storage for
record data 568, Manipulating pointers to records 569

16.5 Building a database of records 570
Creating the employee database 570, Using the database 573

16.6 Designing a record-based application 574
The importance of using database 575, Framing the
problem 575, Designing the internal representation 576,
Designing the external structure 580, Coding the program 581,
:116% V1h C5 (1 (1C3C1-C7H6n rosion XXX2 (IV VICE VI 4 SA522 3 : • Sos C Sox3X& $ $ v V

Summary 589
REVIEW QUESTIONS 592
PROGRAMMING EXERCISES 593

17 Looking Ahead 601
17.1 Recursion 602

A simple illustration of recursion 603, The Factorial function 604,
The recursive leap of faith 609, The recursive paradigm 610,
Generating permutations 611, Thinking recursively 614

17.2 Abstract data types 614
The queue abstraction 615, Representing types in the queue
abstraction 616, The queue.h interface 618. Implementing
the queue abstraction 620, Alternative implementation of the

17.3 Analysis of algorithms 628
Evaluating algorithmic efficiency 628, Big O notation 629, Selection

* • 2

sort revisited 630, Divide and conquer strategies 631. Merging two
arrays 632, The merge sort algorithm 633, The computational
complexity of merge sort 635, Comparing quadratic and N log N
performance 636

Summary 637
REVIEW QUESTIONS 638
PROGRAMMING EXERCISES 639

Appendix A. Summary of C Syntax and Structure
A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9

An overview of the compilation process 648
01 09 4The C preprocessor 648
The lexical structure of C programs 650
Expressions 652
Statements 653
Functions 657
Declarations 658
Data types 659
ANSI libraries 662

Appendix B. Library Sources

Index

647

669

696

•**
XXVIII

