This book presents in a detailed and self-contained way a new and important density result in the analysis of fractional partial differential equations, while also covering several fundamental facts about space- and time-fractional equations.

## THE SERIES: DE GRUYTER STUDIES IN MATHEMATICS

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods, and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist.

The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level.



## Contents

Bibliography — 123

Index — 129

| Prefac               | e — V                                                                                                                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Acknowledgment —— IX |                                                                                                                                |
| 1                    | Introduction: why fractional derivatives? —— 1                                                                                 |
| 2                    | Main results —— 45                                                                                                             |
| 3                    | Boundary behavior of solutions of time-fractional equations — 51                                                               |
| 3.1                  | Sharp boundary behavior for the time-fractional eigenfunctions — 5                                                             |
| 3.2                  | Sharp boundary behavior for the time-fractional harmonic functions — 53                                                        |
| 4                    | Boundary behavior of solutions of space-fractional equations — 57                                                              |
| 4.1                  | Green representation formulas and solution of $(-\Delta)^s u = f$ in $B_1$ with homogeneous Dirichlet datum — 57               |
| 4.1.1                | Solving $(-\Delta)^s u = f$ in $B_1$ for discontinuous f vanishing near $\partial B_1 - 57$                                    |
| 4.1.2                | Solving $(-\Delta)^s u = f$ in $B_1$ for $f$ Hölder continuous near $\partial B_1$ — 62                                        |
| 4.2                  | Existence and regularity for the first eigenfunction of the higher order fractional Laplacian —— 63                            |
| 4.3                  | Boundary asymptotics of the first eigenfunctions of $(-\Delta)^s$ — 70                                                         |
| 4.4                  | Boundary behavior of s-harmonic functions — 83                                                                                 |
| 5                    | Proof of the main result — 87                                                                                                  |
| 5.1                  | A result which implies Theorem 2.1 — 87                                                                                        |
| 5.2                  | A pivotal span result towards the proof of Theorem 5.1 — 88                                                                    |
| 5.3                  | Every function is locally $\Lambda_{-\infty}$ -harmonic up to a small error, and completion of the proof of Theorem 5.1 —— 113 |
| 5.3.1                | Proof of Theorem 5.1 when $f$ is a monomial — 113                                                                              |
| 5.3.2                | Proof of Theorem 5.1 when $f$ is a polynomial — 116                                                                            |
| 5.3.3                | Proof of Theorem 5.1 for a general $f$ — 117                                                                                   |
| A                    | Some applications — 119                                                                                                        |
|                      |                                                                                                                                |