Contents

Introduction	n to the thi	rd edition	xii
Acknowledg	gements		xı
About the co	ompanion	website	xvi
Chapter 1	The basic principles of photosynthetic energy storage		1
	1.1	What is photosynthesis?	1
	1.2	Photosynthesis is a solar energy storage process	3
	1.3	Where photosynthesis takes place	4
	1.4	The four phases of energy storage in photosynthesis	5
	Refe	rences	9
Chapter 2	Photosynthetic organisms and organelles		11
	2.1	Introduction	11
	2.2	Classification of life	12
	2.3	Prokaryotes and eukaryotes	14
	2.4	Metabolic patterns among living things	15
	2.5	Phototrophic prokaryotes	16
	2.6	Photosynthetic eukaryotes	21
	Refe	rences	24
Chapter 3	History	and early development of photosynthesis	27
	3.1	Van Helmont and the willow tree	27
	3.2	Carl Scheele, Joseph Priestley, and the discovery of oxygen	28
	3.3	Ingenhousz and the role of light in photosynthesis	29
	3.4	Senebier and the role of carbon dioxide	29
	3.5	De Saussure and the participation of water	29
	3.6	The equation of photosynthesis	30
	3.7	Early mechanistic ideas of photosynthesis	31
	3.8	The Emerson and Arnold experiments	32
	3.9	The controversy over the quantum requirement of photosynthesis	35
	3.10	The red drop and the Emerson enhancement effect	35
	3.11	Antagonistic effects	37

	3.12	Early formulations of the Z scheme for photosynthesis	37
	3.13	ATP formation	39
	3.14		39
	Refer	rences	39
Chapter 4	Photosynthetic pigments: structure and spectroscopy		41
	4.1	Chemical structures and distribution of chlorophylls and	
		bacteriochlorophylls	41
	4.2	Pheophytins and bacteriopheophytins	47
	4.3	Chlorophyll biosynthesis	48
	4.4	Spectroscopic properties of chlorophylls	51
	4.5	Carotenoids	55
	4.6	Bilins	58
	Refer	rences	59
Chapter 5	Antenna	a complexes and energy transfer processes	61
	5.1	General concepts of antennas and a bit of history	61
	5.2	Why antennas?	62
	5.3	Classes of antennas	64
	5.4	Physical principles of antenna function	65
	5.5	Structure and function of selected antenna complexes	73
	5.6	Regulation of antennas	84
	Refer	rences	87
Chapter 6	Reaction centers and electron transport pathways in anoxygenic phototrophs		91
	6.1	Basic principles of reaction center structure and function	92
	6.2	Development of the reaction center concept	92
	6.3	Purple bacterial reaction centers	93
	6.4	Theoretical analysis of biological electron transfer reactions	98
	6.5	Quinone reductions, the role of the Fe and pathways of proton uptake	101
	6.6	Organization of electron transfer pathways	103
	6.7	Completing the cycle – the cytochrome bc, complex	105
	6.8	Membrane organization in purple bacteria	109
	6.9	Electron transport in other anoxygenic phototrophic bacteria	110
	Refere		113
Chapter 7	Reaction	n centers and electron transfer pathways in oxygenic	
- Postsking	photosynthetic organisms		
	7.1	Spatial distribution of electron transport components in thylakoids	
		of oxygenic photosynthetic organisms	117
	7.2	Noncyclic electron flow in oxygenic organisms	119

			Contents ix	
	7.3	Photosystem II overall electron transfer pathway	119	9
	7.4	Photosystem II forms a dimeric supercomplex in the thylakoid membrane		
	7.5	The oxygen-evolving complex and the mechanism of water	120	
		oxidation by Photosystem II	123	
	7.6	The structure and function of the cytochrome $b_6 f$ complex	128	
	7.7	Plastocyanin donates electrons to Photosystem I	130	
	7.8	Photosystem I structure and electron transfer pathway	131	l
	7.9	Ferredoxin and ferredoxin-NADP reductase complete the noncyclic	:	
	00.0	electron transport chain	134	ł
	Refe	rences	139)
Chapter 8	Chemic	smotic coupling and ATP synthesis	145	,
	8.1	Chemical aspects of ATP and the phosphoanhydride		
		bonds	145	;
	8.2	Historical perspective on ATP synthesis	147	7
	8.3	Quantitative formulation of proton motive force	148	3
	8.4	Nomenclature and cellular location of ATP synthase	150)
	8.5	Structure of ATP synthase	150)
	8.6	The mechanism of chemiosmotic coupling	153	,
	Refe	rences	157	,
Chapter 9	Carbon	metabolism	159)
	9.1	The Calvin-Benson cycle is the primary photosynthetic carbon		
		fixation pathway	159)
	9.2	Photorespiration is a wasteful competitive process to		
		carboxylation	173	,
	9.3	The C4 carbon cycle minimizes photorespiration	176	
	9.4	Crassulacean acid metabolism avoids water loss in plants	180	
	9.5	Algae and cyanobacteria actively concentrate CO,	182	
	9.6	Sucrose and starch synthesis	183	
	9.7	Other carbon fixation pathways in anoxygenic phototrophs	186	
	Refe	rences	188	
Chapter 10	Genetic	s, assembly, and regulation of photosynthetic systems	191	
	10.1	Gene organization in anoxygenic photosynthetic bacteria	191	
	10.2	Gene expression and regulation of purple photosynthetic bacteria	193	
	10.3	Gene organization in cyanobacteria	194	
	10.4	Chloroplast genomes	194	
	10.5	Pathways and mechanisms of protein import and targeting in		
		chloroplasts	195	

	10.6	Gene regulation and the assembly of photosynthetic complexes	
		in cyanobacteria and chloroplasts	199
	10.7	The regulation of oligomeric protein stoichiometry	200
	10.8	Assembly, photodamage, and repair of Photosystem II	201
	Refer	ences	203
Chapter 11	The use	of chlorophyll fluorescence to probe photosynthesis	207
	11.1	The time course of chlorophyll fluorescence	208
	11.2	The use of fluorescence to determine the quantum yield	
		of Photosystem II	209
	11.3	Fluorescence detection of nonphotochemical quenching	211
	11.4	The physical basis of variable fluorescence	211
	Refer	ences	212
Chapter 12	Origin a	nd evolution of photosynthesis	215
	12.1	Introduction	215
	12.2	Early history of the Earth	215
	12.3	Origin and early evolution of life	216
	12.4	Geological evidence for life and photosynthesis	218
	12.5	The nature of the earliest photosynthetic systems	222
	12.6	The origin and evolution of metabolic pathways with special	
		reference to chlorophyll biosynthesis	224
	12.7	Origin and evolution of photosynthetic pigments	225
	12.8	Evolutionary relationships among reaction centers and other	
		electron transport components	229
	12.9	Do all photosynthetic reaction centers derive from a common ancestor?	232
		The origin of linked photosystems and oxygen evolution	235
	12.11	Origin of the oxygen-evolving complex and the transition to	
		oxygenic photosynthesis	236
		Antenna systems have multiple evolutionary origins	238
		Endosymbiosis and the origin of chloroplasts	241
		Most types of algae are the result of secondary endosymbiosis	244
	12.15	Following endosymbiosis, many genes were transferred to the	
		nucleus, and proteins were reimported to the chloroplast	246
		Evolution of carbon metabolism pathways	248
	Refere	ences	249
Chapter 13	Bioenerg	gy applications and artificial photosynthesis	257
	13.1	Introduction	257
	13.2	Solar energy conversion	257
	13.3	What is the efficiency of natural photosynthesis?	260
	13.4	Calculation of the energy storage efficiency of oxygenic photosynthesis	261

		Contents	хi
13.5	Why is the efficiency of photosynthesis so low?		262
13.6	How might the efficiency of photosynthesis be improved?		263
13.7	Artificial photosynthesis		264
Refe	rences		268
Appendix 1 Light, ene	rgy, and kinetics		271
Index			313