Contents

List	t of Figures t of Tables t of Foundations	xvii xxiii xxiv
Pa	rt 1 Introduction	1
1	Evolutionary Cell Biology	3
	The Dominance of Unicellular Life What is Evolutionary Cell Biology? The Completeness of Evolutionary Theory Evolution Via Nonadaptive Pathways The Grand Challenges The origin of life The roots of organismal complexity Molecular stochasticity Molecular complexes	4 5 7 10 11 11 12 12 13
	Cellular networks Cellular surveillance systems Growth regulation Biological scaling laws	13 13 14 14
2	The Origin of Cells The Earliest Stages The alkaline hydrothermal-vent hypothesis The terrestrial geothermal-field hypothesis An Early RNA World? Membranes and the Emergence of Individuality Genomic Constraints on the Establishment of Life	18 19 22 24 25 27 30
3	The Major Lines of Descent	45
	The Primary Domains of Life Times of Origin The Emergence of Eukaryotes	46 49 50

The Moleculus Amilian Flandshirt Machinistal Line Const. Com.

	The stem eukaryote	50
	The eukaryotic radiation	52
	A eukaryotic Big Bang?	53
Pa	rt 2 The Genetic Mechanisms of Evolution	61
4	The Population-Genetic Environment	63
	Demystifying Random Genetic Drift	63
	The Genetic Effective Sizes of Populations	67
	Probability of Fixation of a Mutant Allele	68
	Evolution of the Mutation Rate	70
	High mutability of mutation rates	73
	Error-prone polymerases	73
	Optimizing the mutation rate	74
	The non-random nature of mutation	75
	Recombination	76
	Evolution of the recombination rate	80
5	Evolution as a Population-Genetic Process	91
	The Perils of the Adaptive Paradigm	92
	The Fitness Effects of New Mutations	92
	The Classical Model of Sequential Fixation	95
	Vaulting Barriers to More Complex Adaptations	98
	Sequential fixation versus stochastic tunnelling	99
	Two-locus transitions	101
	More complex scenarios	102
	Effects of recombination	104
	The Phylogenetic Dispersion of Mean Phenotypes	105
	Two-state traits	105
	Multistate-traits and the drift-barrier hypothesis	106
6	Evolution of Cellular Complexity	118
	Illusions of Grandeur	118
	Constructive Neutral Evolution	120
	Ribosomes	122
	Evolution by Gene Duplication	124
	The masking effect	126
	Neofunctionalization	126
	Subfunctionalization	126
	Adaptive-conflict resolution	128
	The Case for Subfunctionalization	128
	The Emergence of Modular Gene Subfunctions	131
	The Passive Origin of Species via Gene Duplication	133

Pa	rt 3 Basic Cellular Features	143
7	The Cellular Environment	145
		- 319
	The Molecular Composition of Cells	145
	Water	146
	Elemental composition	146
	Biomolecules	149
	Numbers of Biomolecules per Cell	149
	Passive Transport of Particles through the Cytoplasm	152
	Intermolecular Encounter Rates	155
	Temperature-Dependence of Biological Processes	156
	Energy, Carbon Skeletons, and Cell Yield	158
8	Evolutionary Scaling Relationships in Cell Biology	168
	Describing Allometric Relationships	169
	Scaling Laws in Cellular Bioenergetics	170
	Metabolic rate	170
	Lifetime energy requirements of a cell	171
	The speed limit on cell-division rates	174
	The Limits to Natural Selection Imposed by the Drift Barrier	177
	Membrane Bioenergetics and the Prokaryote–Eukaryote Transition	180
	Energy production and the mitochondrion	181
	Cellular investment in ribosomes	183
	The mitochondrion as a driver of eukaryotic evolution	183
9	Cell Growth and Division	191
	Ribosomes and Cell Growth	191
	Models for Cellular Growth	194
	Control of Cell Size	196
	Molecular mechanisms of division-size determination	198
	Environmental determinants of cell size	201
	Scaling of Intracellular Features	203
	Phenotypic Variation in Cell Size and Division Time	205
	Stochastic partitioning of cell contents at division	206
	Phenotypic Variation and Adaptation	208
	Environmental variation and the efficiency of selection	208
	Inheritance of environmental effects	210
	The adaptive value of phenotypic variation	211
10	The Cell Life Cycle	225
	The Eukaryotic Cell Cycle	226
	Phylogenetic diversity	227
	Network complexity	229

Part 5 Energetics and Metabolism		409
17	The Costs of Cellular Features	411
	The Bioenergetic Cost of a Cellular Feature	411
	The Evolutionary Cost of a Cellular Feature	414
	Biosynthetic Costs of Nucleotides and Amino Acids	415
	An Empirical Shortcut to Cost Estimates	417
	The Energetic Cost of a Gene	419
	Chromosome-associated costs	420
	Transcription-associated costs	421
	Translation-associated costs	423
	Evolutionary implications	424
	The Cost of Lipids and Membranes	427
	Costs of individual molecules	428
	Total cellular investment	428
18	Resource Acquisition and Homeostasis	443
	Adaptive Fine-Tuning of Elemental Composition	443
	Nutrient Uptake Kinetics	445
	Channels and transporters	446
	Physiological acclimation	448
	Advantages of motility	448
	Photosynthesis	450
	The transformation of solar to chemical energy	451
	The world's most abundant enzyme	452
	Osmoregulation	455
	Circadian Rhythms	457
19	Enzymes and Metabolic Pathways	470
	Engramos	171
	Enzymes	471 471
	Basic enzymology Degree of molecular perfection	471
	Enzyme promiscuity	472
	Pathway Flux Control	475
	Pathway position and the strength of selection	476
	Speed versus efficiency	478
	Pathway Expansion and Contraction	479
	Stochastic meandering of pathway architecture	480
	The origin of novel enzymes	483
	Pathway Participant Remodelling	484
	Non-orthologous gene replacement	487
	Internal pathway expansion via multifunctional enzymes	489

Pa	rt 6 Information Processing	503
20	Intracellular Errors	505
	Transcript Fidelity	506
	Translational Fidelity	509
	Biophysics of Substrate Discrimination and the Cost of Proof-Reading	511
	The Limits to Selection on Error Rates	513
	The Evolutionary Consequences of Surveillance-Mechanism Layering	515
	Adaptive Significance of Errors	517
21	Transcription	531
	Molecular Stochasticity in Single Cells	532
	Cellular mRNA abundances	532
	Cellular protein abundances	535
	Expression noise and adaptation	536
	The Basic Biology of Transcription	538
	A physical model for TF binding	538
	Encounter rates between TFs and their binding sites	540
	Coevolution of Transcription Factors and Their Binding Sites	541
	General observations	542
	Evolutionary distributions of binding site motifs	543
	Application of the models	545
	Evolution of Pathway Architecture	547
	Activators versus suppressors	548
	Regulatory rewiring	549
	Network topology	551
22	Environmental Sensing	570
	Bacterial Signal Transduction Systems	571
	Origin and diversification	572
	Coevolutionary integration of components	574
	Emergence of new pathways	575
	Interconvertible Proteins and Ultrasensitivity	577
	The cost of signal transduction	580
	Similarities and differences in eukaryotic systems	580
	Chemotaxis	583
	Accuracy of environmental assessment	586
	Phenotypic Bimodality and Bet-Hedging	587
	Adaptive fine-tuning versus inadvertent by-products of pathway	
	structure	588

Pa	rt 7 Organismal Complexity	601
23	Endosymbiosis	603
	Mitochondria	604
	Origins	604
	Energetic boost or burden	607
	Functional remodelling	609
	The Extreme Population-Genetic Environments of Mitochondria	610
	Mutation rates	611
	Modes of inheritance	612
	Muller's ratchet	614
	Organelle Genome Degradation	615
	Animal mitochondrial tRNAs	616
	Coevolutionary drive and compensatory mutations	617
	Plastid Evolution	618
	Addiction to Endosymbionts	620
24	Origins of Organismal Complexity	636
	Deconstructing the Great Chain of Being	637
	Genome complexity and organismal complexity	639
	A shake-up of genomic organization in the ancestral eukaryote	640
	Multicellularity	642
	Multicellularity and cooperativity in bacteria	643
	The costs of multicellularity	645
	The emergence of cell type specialization	647
	Closing Comments	649
امط		(55
Ind	ex	655