Research into the stability of matter has been one of the most successful chapters in mathematical physics, and is a prime example of how modern mathematics can be applied to problems in physics.

A unique account of the subject, this book provides a complete, self-contained description of research on the stability of matter problem. It introduces the necessary quantum mechanics to mathematicians, and aspects of functional analysis to physicists. The topics covered include electrodynamics of classical and quantized fields, Lieb–Thirring and other inequalities in spectral theory, inequalities in electrostatics, stability of large Coulomb systems, gravitational stability of stars, basics of equilibrium statistical mechanics, and the existence of the thermodynamic limit.

The book is an up-to-date account for researchers, and its pedagogical style makes it suitable for advanced undergraduate and graduate courses in mathematical physics.

Professor of Physics at Princeton University. He has been a leader of research in mathematical physics for many decades, and his achievements have earned him numerous prizes and awards.

ROBERT SEIRINGER is an Assistant Professor of Physics at Princeton University, where his research is centered largely on the quantum-mechanical many-body problem.

	Preface	xiii
1	Prologue	1
	1.1 Introduction	1
	1.2 Brief Outline of the Book	5
2	Introduction to Elementary Quantum Mechanics and Stability	
-	of the First Kind	8
	2.1 A Brief Review of the Connection Between Classical and	
	Quantum Mechanics	8
	2.1.1 Hamiltonian Formulation	10
	2.1.2 Magnetic Fields	10
	2.1.3 Relativistic Mechanics	12
	2.1.4 Many-Body Systems	13
	2.1.5 Introduction to Quantum Mechanics	14
	2.1.6 Spin	18
	2.1.7 Units	21
	2.2 The Idea of Stability	24
	2.2.1 Uncertainty Principles: Domination of the Potential	
	Energy by the Kinetic Energy	26
	2.2.2 The Hydrogenic Atom	29
3	Many-Particle Systems and Stability of the Second Kind	31
	3.1 Many-Body Wave Functions	31
	3.1.1 The Space of Wave Functions	31
	3.1.2 Spin	33
	3.1.2 Bosons and Fermions (The Pauli Exclusion	
	Principle)	35

		3.1.4 Density Matrices	38
		3.1.5 Reduced Density Matrices	41
	3.2	Many-Body Hamiltonians	50
		3.2.1 Many-Body Hamiltonians and Stability: Models with	
		Static Nuclei	50
		3.2.2 Many-Body Hamiltonians: Models without Static	
		Particles	54
		3.2.3 Monotonicity in the Nuclear Charges	57
		3.2.4 Unrestricted Minimizers are Bosonic	58
4	Lieb	5-Thirring and Related Inequalities	62
	4.1	LT Inequalities: Formulation	62
		4.1.1 The Semiclassical Approximation	63
		4.1.2 The LT Inequalities; Non-Relativistic Case	66
		4.1.3 The LT Inequalities; Relativistic Case	68
	4.2	Kinetic Energy Inequalities	70
	4.3	The Birman–Schwinger Principle and LT Inequalities	75
		4.3.1 The Birman–Schwinger Formulation of the	
		Schrödinger Equation	75
		4.3.2 Derivation of the LT Inequalities	77
		4.3.3 Useful Corollaries	80
	4.4	Diamagnetic Inequalities	82
	4.5	Appendix: An Operator Trace Inequality	85
		enimatoité mutanule a noiteabutal é.i.s.	
5	Elec	ctrostatic Inequalities	89
	5.1	General Properties of the Coulomb Potential	89
	5.2	Basic Electrostatic Inequality	92
	5.3	Application: Baxter's Electrostatic Inequality	98
	5.4	Refined Electrostatic Inequality	100
6	An	Estimation of the Indirect Part of the Coulomb Energy	105
	6.1	Introduction	105
	6.2	Examples	107
	6.3	Exchange Estimate	110
	6.4	Smearing Out Charges	112
	6.5	Proof of Theorem 6.1, a First Bound	114
	6.6	An Improved Bound	118

7	Stab	ility of Non-Relativistic Matter	121
	7.1	Proof of Stability of Matter	122
	7.2	An Alternative Proof of Stability	125
	7.3	Stability of Matter via Thomas-Fermi Theory	127
	7.4	Other Routes to a Proof of Stability	129
		7.4.1 Dyson-Lenard, 1967	130
		7.4.2 Federbush, 1975	130
		7.4.3 Some Later Work	130
	7.5	Extensivity of Matter	131
	7.6	Instability for Bosons	133
		7.6.1 The $N^{5/3}$ Law	133
		7.6.2 The $N^{7/5}$ Law	135
8	Stab	ility of Relativistic Matter	139
	8.1	Introduction	139
		8.1.1 Heuristic Reason for a Bound on α Itself	140
	8.2	The Relativistic One-Body Problem	141
	8.3	A Localized Relativistic Kinetic Energy	145
	8.4	A Simple Kinetic Energy Bound	146
	8.5	Proof of Relativistic Stability	148
	8.6	Alternative Proof of Relativistic Stability	154
	8.7	Further Results on Relativistic Stability	156
	8.8	Instability for Large α , Large q or Bosons	158
9	Mag	netic Fields and the Pauli Operator	164
	9.1	Introduction	164
	9.2	The Pauli Operator and the Magnetic Field Energy	165
		Zero-Modes of the Pauli Operator	166
		A Hydrogenic Atom in a Magnetic Field	168
		The Many-Body Problem with a Magnetic Field	171
	9.6	Appendix: BKS Inequalities	178
10	The	Dirac Operator and the Brown-Ravenhall Model	181
	10.1	The Dirac Operator	181
		10.1.1 Gauge Invariance	184
	10.2	Three Alternative Hilbert Spaces	185
		10.2.1 The Brown–Ravenhall Model	186

	10.2.2 A Modified Brown–Ravenhall Model	187
	10.2.3 The Furry Picture	188
	10.3 The One-Particle Problem	189
	10.3.1 The Lonely Dirac Particle in a Magnetic Field	189
	10.3.2 The Hydrogenic Atom in a Magnetic Field	190
	10.4 Stability of the Modified Brown–Ravenhall Model	193
	10.5 Instability of the Original Brown–Ravenhall Model	196
	10.6 The Non-Relativistic Limit and the Pauli Operator	198
11	Quantized Electromagnetic Fields and Stability of Matter	200
	11.1 Review of Classical Electrodynamics and its Quantization	200
	11.1.1 Maxwell's Equations	200
	11.1.2 Lagrangian and Hamiltonian of the Electromagnetic	
	Field	204
	11.1.3 Quantization of the Electromagnetic Field	207
	11.2 Pauli Operator with Quantized Electromagnetic Field	210
	11.3 Dirac Operator with Quantized Electromagnetic Field	217
12	The Ionization Problem, and the Dependence of the Energy on	
	N and M Separately	221
	12.1 Introduction	221
	12.2 Bound on the Maximum Ionization	222
	12.3 How Many Electrons Can an Atom or Molecule Bind?	228
13	Gravitational Stability of White Dwarfs and Neutron Stars	233
	13.1 Introduction and Astrophysical Background	233
	13.2 Stability and Instability Bounds	235
	13.3 A More Complete Picture	240
	13.3.1 Relativistic Gravitating Fermions	240
	13.3.2 Relativistic Gravitating Bosons	242
	13.3.3 Inclusion of Coulomb Forces	243
14	The Thermodynamic Limit for Coulomb Systems	247
	14.1 Introduction	247
	14.2 Thermodynamic Limit of the Ground State Energy	249
	14.3 Introduction to Quantum Statistical Mechanics and the	
	Thermodynamic Limit	252

14.4 A Brief Discussion of Classical Statistical Mechanics	258	
14.5 The Cheese Theorem	260	
14.6 Proof of Theorem 14.2	263	
14.6.1 Proof for Special Sequences	263	
14.6.2 Proof for General Domains	268	
14.6.3 Convexity	270	
14.6.4 General Sequences of Particle Numbers	271	
14.7 The Jellium Model	271	
List of Symbols	276	
Bibliography		
Index		