Contents

LR 12.7 Introduction to coherent optimal control

Gravitooptical and agety-field traps | loverton shadbent learning | 108

1	Introduction			
	1.1	Ways to control the emission of light	1	
	1.2	From the control of light to the control of atoms		
		and molecules	7	
	1.3	On the aims of this book	10	
2	Elementary radiative processes			
	2.1	Spontaneous emission	12	
	2.2	Stimulated absorption and emission	15	
		Recoil effect and Doppler effect	18	
	2.4	Resonant excitation of a two-level system free from		
		relaxation	22	
	2.5	Resonant excitation of a two-level system with relaxations	26	
	2.6	Radiation-scattering processes	33	
3	Laser velocity-selective excitation			
	3.1	Doppler broadening of optical spectral lines	35	
	3.2	Homogeneous broadening mechanisms	38	
	3.3	Doppler-free saturation spectroscopy	40	
	3.4	Ultrahigh spectral resolution	49	
4	Opt	ical orientation of atoms and nuclei	54	
	4.1	Optical orientation of atoms	54	
	4.2	Radio-frequency spectroscopy of optically oriented atoms	58	
	4.3	Spin-exchange optical pumping	61	
	4.4	Coherent effects and optically oriented atoms	62	
	4.5	Applications of optically pumped atoms	64	
5	Laser cooling of atoms			
	5.1	Introduction. History of ideas	69	
	5.2	Laser radiation force on a two-level atom	72	
	5.3	Quantum fluctuation effects. Temperature limits of laser		
		cooling	76	
	5.4	Doppler cooling	77	
	5.5	Laser polarization gradient cooling below the Doppler limit	83	
	5.6	Cooling below the recoil limit	87	

x Contents

6	Laser trapping of atoms			
	6.1	Optical trapping	92	
	6.2	Magnetic trapping	100	
	6.3	Magnetooptical trapping	103	
	6.4	Gravitooptical and near-field traps	106	
	6.5	Optical trapping of cold atoms—new tools for		
		atomic physics	109	
7	Ato	m optics	113	
•		Introduction. Matter waves	113	
	7.2	Reflection of atoms by light	114	
	7.3	Laser focusing of an atomic beam	120	
		Diffraction of stoma	127	
		Atom interferementers	130	
		Atomic holography	135	
		Towards atom nanooptics	135	
	1.1	Towards atom nanooptics	100	
8	From	n laser-cooled and trapped atoms to atomic and		
	mole	ecular quantum gases	138	
	8.1	Introduction	139	
	8.2	Bose–Einstein condensation of atomic gases	141	
	8.3	Fermi-degenerate quantum atomic gases	148	
	8.4	Formation of ultracold molecules	150	
	8.5	Molecular quantum gases	155	
9	Lase	er photoselective ionization of atoms	158	
	9.1	Introduction	158	
	9.2	Resonance excitation and ionization of atoms	159	
	9.3	Photoionization detection of rare atoms and radioactive		
		isotopes	168	
	9.4	Laser photoionization separation of isotopes, isobars, and		
		nuclear isomers	175	
10	Mul	tiphoton ionization of molecules	182	
		Photoselective resonance ionization of molecules	183	
	10.2	Resonance-enhanced multiphoton ionization (REMPI) of		
		molecules	185	
	10.3	Laser desorption/ionization of biomolecules	189	
11	Pho	toselective laser control of molecules via		
	mole	ecular vibrations	198	
	11.1	Vibrationally mediated photodissociation of molecules via		
		excited electronic states	199	
	11.2	Basics of IR multiple-photon excitation/dissociation of		
		polyatomic molecules in the ground state	201	
	11.3	Characteristics of the IR MPE/D of polyatomic molecules	208	
		Intermolecular selectivity of IR MPE/D for laser isotope		
		separation	218	
	11.5	Prospects for mode-selective MPE/D by IR femtosecond pulses	221	

12	Coherent laser control of molecules				
	12.1 Introduction to coherent optimal control	225			
	12.2 Coherent control using wave packets	226			
	12.3 Coherent control using quantum interference	229			
	12.4 Optimal feedback control	230			
	12.5 Coherent optimal control by tailored strong-field laser pulses	232			
	12.6 Coherent control of large molecules in liquids	234			
	12.7 Perspectives	235			
13	Related topics: laser control of microparticles and				
	free electrons	238			
	13.1 Laser trapping of microparticles	238			
	13.2 Laser control of free-electron motion	244			
14	Concluding comments	251			
References					
Index					

Building program of energy that can be absorbed or given up to the protest of our asion.

In 1965. Album Einstein introductoi the notable of figure of light of this party of

armed northele of the charlesomagnetic belo. Thereafter With Boar signific the blue

non emission process and arrived at the following fundamental constitution, and the

along clour and amily emission only enion place when the atom about from one but to

encilled - The Emission user observation of gameina bu-the quantity charge in the File

control she process of spins ancine ranssing of hills. haded on a sufficient modification to

2 An Individual (stimulated) investion of an airca between the syntax in the syntax

Contents xi