Contents

Prefa	ace	xix	2.3	The influenza virus is a model for	
Ackn	nowledgments	xxi		replication of an animal virus	25
Auth		xxiii xxiv	2.4	The host surface is especially important for attachment, penetration, and uncoating	27
1	THE FUNDAMENTALS OF MOLECULAR AND CELLULAR VIROLOGY	1	2.5	Viral gene expression and genome replication take advantage of host transcription, translation, and replication features	28
1.1	Molecular and cellular virology focuses on the molecular interactions that		2.6	The host cytoskeleton and membranes are typically crucial during virus assembly	29
	occur when a virus infects a host cell	2	2.7	Host-cell surfaces influence the mechanism of virus release	30
1.2	The discipline of virology can be traced historically to agricultural and medical science	3	2.8	Viruses can also cause long-term infections	30
1.3	Basic research in virology is critical for molecular biology, both historically		2.9	Herpesvirus is a model for latent infections	32
1.4	and today Viruses, whether understood as living or not, are the most abundant evolving entities known	8	2.10	Research in molecular and cellular virology often focuses on the molecular details of each stage of the replication cycle	32
1.5	Viruses can be defined unambiguously		Esser	itial concepts	32
	by four traits	9	Ques	tions	33
1.6	Virions are infectious particles minimally made up of nucleic acids	10	Furth	ner reading	33
1.7	Viruses can be classified according to the ways they synthesize and use mRNA	10	3	ATTACHMENT, PENETRATION, AND UNCOATING	35
1.8	Viruses are propagated in the laboratory by mixing them with host cells	13	3.1	Viruses enter the human body through one of six routes	35
1.9	Viral sequences are ubiquitous in animal genomes, including the human genome	16	3.2	The likelihood of becoming HIV+ depends on the route of transmission and the amount of virus in the	
Esser	ntial concepts	17		infected tissue	36
	stions	18	3.3	Viruses are selective in their host	
Furth	her reading	18		range and tissue tropism	37
			3.4	The virion is a genome delivery device	38
2	THE VIRUS REPLICATION CYCLE	21	3.5	The genomic contents of a virion are irrelevant for attachment, penetration, and uncoating	39
2.1	Viruses reproduce through a lytic virus replication cycle	23	3.6	Animal viruses attach to specific cells and can spread to multiple tissues	42
2.2	Molecular events during each stage of the virus replication cycle	24		and can spicaa to martiple tissues	72

3.7	Noncovalent intermolecular forces are responsible for attaching to host cells	43	3.26 Picornaviruses are naked viruses that release their genomic content		62
3.8	Most animal virus receptors are glycoproteins	44	3.27	through pore formation Some enveloped viruses use	62
3.9	Animal virus receptors can be identified through genetic,			membrane fusion with the outside surface of the cell for penetration	63
	biochemical, and immunological approaches	45	3.28	Vesicle fusion in neuroscience is a model for viral membrane fusion	63
3.10	Animal virus receptors can be		3.29	HIV provides a model of membrane	
	identified through molecular cloning	46		fusion triggered by a cascade of protein-protein interactions	65
3.11	Animal virus receptors can be identified through affinity chromatography	47	3.30	Influenza provides a model for	03
3.12	Antibodies can be used to identify	4/	3.30	viral envelope fusion triggered by	
3.12	animal virus receptors	49		acidification of an endocytic vesicle	67
3.13	Rhinovirus serves as a model for attachment by animal viruses lacking		3.31	The destination for the virus genome may be the cytoplasm or the nucleus	67
3.14	spikes	50	3.32	Subversion of the cellular cytoskeleton is critical for uncoating	67
3.14	Several independent lines of evidence indicate that ICAM-1 is the rhinovirus		3.33	Viruses that enter an intact nucleus	•
	receptor	53		must manipulate gated nuclear pores	69
3.15	Experiments using molecular genetics support the conclusion that ICAM-1 is		3.34	Viruses introduce their genomes into the nucleus in a variety of ways	69
3.16	the rhinovirus receptor Structural biology experiments	53	3.35	Adenovirus provides a model for uncoating that delivers the viral	
	support the conclusion that ICAM-1 is the rhinovirus receptor	54	2.26	genome into the nucleus	71
3.17	Bioinformatics comparisons support the conclusion that ICAM-1 is the		3.36	The unusual uncoating stages of reoviruses and poxviruses leave the virions partially intact in the cytoplasm	72
	rhinovirus receptor	54	3.37	Viruses that penetrate plant cells face	
3.18	Influenza serves as a model for			plant-specific barriers to infection	73
EE	attachment by enveloped viruses	55	3.38	Plant viruses are often transmitted by	
3.19	The influenza HA spike protein binds to sialic acids	56	biting arthropod vectors		74
3.20	The second stage of the virus	30		tial concepts	76
3.20	replication cycle includes both		Quest		76
	penetration and uncoating and, if		Furth	er reading	77
	necessary, transport to the nucleus	57			
3.21	Viruses subvert the two major		4	GENE EXPRESSION AND	
	eukaryotic mechanisms for internalizing particles	59		GENOME REPLICATION IN	
2 22		29		MODEL BACTERIOPHAGES	79
3.22	Many viruses subvert receptor- mediated endocytosis for penetration	59	4.1	Bacterial host cell transcription is	
3.23	Herpesvirus penetrates the cell		81	catalyzed by a multisubunit machine	
	through phagocytosis	60		that catalyzes initiation, elongation,	
3.24	Common methods for determining the			and termination	80
	mode of viral penetration include use		4.2	Bacterial host cell and bacteriophage	02
	of drugs and RNA interference	60	4.2	mRNA are typically polycistronic	82
3.25	The virion is a metastable particle primed for uncoating once irreversible		4.3	Transcription and translation in bacterial host cells and bacteriophages are nearly simultaneous because	
	attachment and penetration have occurred	61		of the proximity of ribosomes and	
	Occurred	01		chromosomes	83

4.4	Bacterial translation initiation, elongation, and termination are controlled by translation factors	83	4.21	Bacteriophages T7 and λ both have three waves of gene expression but the molecular mechanisms controlling	100
4.5	Bacteriophages, like all viruses, encode structural and nonstructural proteins	85	4.22	them differ Bacteriophage λ genome replication occurs in two stages, through two	103
4.6	The T7 bacteriophage has naked,			different intermediates	104
	complex virions and a large double- stranded DNA genome	86	4.23	Lambda genome replication requires phage proteins O and P and many	105
4.7	Bacteriophage T7 encodes 55 proteins		424	subverted host proteins The abundance of best Das A protein	105
	in genes that are physically grouped together by function	87	4.24	The abundance of host DnaA protein relative to the amount of phage DNA	
4.8	Bacteriophage T7 proteins are			controls the switch to rolling-circle	405
	expressed in three major waves	87	4 25	replication	105
4.9	The functions of bacteriophage proteins often correlate with the	00	4.25	There are billions of other bacteriophages that regulate gene expression in various ways	106
4.40	timing of their expression	88	4.26	Some bacteriophages have ssDNA,	
4.10	Bacteriophage T7 gene expression is highly regulated at the level of			dsDNA, or (+) ssRNA genomes	107
	transcription initiation	89	4.27	The replication cycles of ssDNA	
4.11	Bacterial host chromosome replication			bacteriophages always include formation of a double-stranded	
	is regulated by the DnaA protein and occurs via a θ intermediate	91		replicative form	107
4.12	Many bacterial proteins are needed to	45.2	4.28	Bacteriophage ΦX174 is of historical	
	catalyze chromosome replication	93		importance	108
4.13	Although many bacteriophages		4.29	Bacteriophage ΦX174 has extremely	
	have linear dsDNA genomes, bacterial hosts cannot replicate the ends of			overlapping protein-coding sequences	108
	linear DNA	94	4.30	Bacteriophage ΦX174 proteins are	
4.14	T7 bacteriophage genome replication			expressed in different amounts	109
	is catalyzed by one of the simplest		4.31	A combination of mRNA levels and	
4.45	known replication machines	95		differential translation accounts for levels of bacteriophage ФX174 protein	
4.15	The λ bacteriophage has naked, complex virions and a large double-			expression	110
	stranded DNA genome	98	4.32	Bacteriophage M13 genome replication	
4.16	Bacteriophage λ can cause lytic or			is catalyzed by host proteins and occurs	
	long-term infections	99	4.22	via a replicative form	111
4.17	There are three waves of gene expression during lytic λ replication	100	4.33	Bacteriophage MS2 is a (+) ssRNA virus that encodes four proteins	113
4.18	The λ control region is responsible for		4.34	Bacteriophage MS2 protein abundance is controlled by secondary structure in	
	early gene expression because of its promoters and the Cro and N proteins			the genome	114
	it encodes	101	4.35	Bacteriophage RdRp enzymes subvert	
4.19	The λ N antitermination protein			abundant host proteins to create an	
	controls the onset of delayed-early			efficient replicase complex	117
4.20	gene expression Tho \ O antitormination protein and	102	4.36	Bacteriophage proteins are common laboratory tools	118
20	The λ Q antitermination protein and Cro repressor protein control the		Essent	tial concepts	125
	switch to late gene expression	102			125
				er reading	126

5	GENE EXPRESSION AND GENOME REPLICATION IN THE POSITIVE-STRAND		5.19	Suppression of translation termination is necessary for production of the nonstructural P1234 Sindbis virus	450
		129	5.20	polyprotein Sindbis virus uses an unusual	150
5.1	Class IV virus replication cycles have		3.20	mechanism to encode the TF protein	151
	common gene expression and genome replication strategies	130	5.21	A programmed –1 ribosome frameshift is needed to produce the	
5.2	Terminal features of eukaryotic mRNA	121	F 22	togavirus TF protein	152
5.3	are essential for translation Monopartite Class IV (+) strand RNA	131	5.22	The picornaviruses, flaviviruses, and togaviruses illustrate many common	
5.5	viruses express multiple proteins from			properties among (+) strand RNA	
	a single genome	132		viruses	153
5.4	Picornaviruses are models for the		5.23	Coronaviruses have long (+) strand	
	simplest (+) strand RNA viruses	132		RNA genomes and novel mechanisms of gene expression and genome	
5.5	Class IV viruses such as poliovirus encode one or more polyproteins	134		replication	154
5.6	Class IV viruses such as poliovirus use		5.24	Coronaviruses have enveloped	
	proteolysis to release small proteins			spherical virions and encode conserved	154
	from viral polyproteins	137	5.25	and species-specific accessory proteins Coronaviruses express a nested set of	134
5.7	Translation of Class IV virus genomes occurs despite the lack of a 5' cap	138	3.23	sgRNAs with leader and transcription regulating sequences	156
5.8	Class IV virus genome replication		5.26	Coronaviruses use a discontinuous	130
	occurs inside a virus replication compartment	139	ER	mechanism for synthesis of replicative forms	157
5.9	The picornavirus 3D ^{pol} is an RdRp and synthesizes a protein-based primer	140	5.27	Most coronavirus sgRNA is translated into a single protein	158
5.10	Structural features of the viral genome		5.28	Coronaviruses use a leaky scanning	
	are essential for replication of Class IV viral genomes	140		mechanism to synthesize proteins from overlapping sequences	158
5.11	Picornavirus genome replication occurs in four phases	141	5.29	Coronaviruses proofread RNA during synthesis	159
5.12	Flaviviruses are models for simple enveloped (+) strand RNA viruses	143	5.30	Plants can also be infected by Class IV RNA viruses	161
5.13	The linear (+) strand RNA flavivirus genomes have unusual termini	144	5.31	Comparing Class IV viruses reveals common themes with variations	162
5.14			Essen	tial concepts	163
	including several with transmembrane segments	144	Ques		164
5.15	Togaviruses are small enveloped			er reading	165
	viruses with replication cycles more complex than those of the flaviviruses	146			
5.16			6	GENE EXPRESSION AND	
	are found inside infected cells	147		GENOME REPLICATION IN	
5.17	Different molecular events			THE NEGATIVE-STRAND	167
	predominate early and late during togavirus infection	148		RNA VIRUSES	167
5.18	Translation of togavirus sgRNA	0	6.1	Study of two historically infamous	
	requires use of the downstream			Class V viruses, rabies and influenza, were instrumental in the development	
	hairpin loop	148		of molecular and cellular virology	167

6.2	The mononegavirus replication cycle includes primary and secondary transcription catalyzed by the		7.2 E.	Rotavirus A has a naked capsid with 3 protein layers enclosing 11 segments of dsRNA	192
	viral RdRp	168	7.3	Rotavirus A encodes 13 proteins	194
6.3	Rhabdoviruses have linear (-) RNA genomes and encode five proteins	170	7.4	Synthesis of rotavirus nucleic acids occurs in a fenestrated double-layered	
6.4	Rhabdoviruses produce five mRNAs with 5' caps and polyadenylated 3' tails through a start-stop mechanism Rhabdovirus genome replication	171	7.5	Translation of rotavirus mRNA requires NSP3 and occurs in viroplasm formed by NSP2 and NSP5	194
6.5	occurs through the use of a complete antigenome cRNP as a template	173	7.6	Rotavirus genome replication precedes secondary transcription	197
6.6	The paramyxoviruses are		Essen	tial concepts	197
	mononegaviruses that use RNA editing		Ques		198
	for gene expression	175		er reading	198
6.7	Filoviruses are filamentous mononegaviruses that encode seven		I di ti		130
	to nine proteins	177	8	GENE EXPRESSION AND	
6.8	The filovirus VP30 protein, not found			GENOME REPLICATION IN	
	in other mononegaviruses, is required for transcription	179		THE DOUBLE-STRANDED	
6.0	Influenza is an example of an	173		DNA VIRUSES	199
6.9	orthomyxovirus	179	0.4		
6.10	Of the 17 influenza A proteins, 9 are		8.1	DNA viruses can cause productive lytic infections, cellular transformation, or	
0.10	found in the virion	180		latent infections	200
6.11	Orthomyxovirus nucleic acid synthesis		8.2	Most Class I animal viruses rely on	
	occurs in the host cell nucleus, not in			host transcription machinery for gene	
	the cytoplasm	181		expression	200
6.12	The first step of transcription by influenza virus is cap snatching	181	8.3	Eukaryotic transcription is affected by the state of the chromatin	201
6.13	An influenza cRNP intermediate is		8.4	Eukaryotic capping, splicing,	
	used as the template for genome			and polyadenylation occur	
	replication	183		co-transcriptionally	202
6.14	Arenavirus RNA genomes are ambisense Expression of the four arenavirus	185	8.5	Polyomaviruses are small DNA viruses with early and late gene expression	205
	proteins reflects the ambisense nature of the genome	186	8.6	The SV40 polyomavirus encodes seven proteins in only 5,243 bp of DNA	206
Essent	tial concepts	187	8.7	The synthesis of mRNA in SV40 is	
Quest	ions	188		controlled by the noncoding control	
Furthe	er reading	188		region	207
			8.8	Late SV40 transcription is regulated by both host and viral proteins	208
	GENE EXPRESSION AND GENOME REPLICATION IN THE DOUBLE-STRANDED		8.9	Most Baltimore Class I viruses including polyomaviruses manipulate the eukaryotic cell cycle	210
	RNA VIRUSES	191	8.10	Most Class I viruses prevent or delay cellular apoptosis	212
7.1	The rotavirus replication cycle		8.11	SV40 forces the host cell to express	
	genome replication, and secondary transcription inside partially intact			S-phase genes and uses large T antigen and host proteins for genome replication	212
	capsids in the host cytoplasm	192			

8.12	SV40 genome replication requires viral and host proteins to form active DNA replication forks	213	8.27	Adenovirus shuts off translation of host mRNA, while ensuring translation of its own late mRNAs through a	
8.13	The papillomavirus replication cycle			ribosome-shunting mechanism	230
	is tied closely to the differentiation	244	8.28	DNA replication in adenovirus requires	
	status of its host cell	214		three viral proteins even though the genome is replicated in the host	
8.14	Human papillomaviruses encode about			cell nucleus	231
	13 proteins that are translated from polycistronic mRNA	217	8.29	Herpesviruses have very large	
0 1 5		217	0.23	enveloped virions and large linear	
8.15	The long control region of HPV regulates papillomavirus transcription			dsDNA genomes	233
	in which pre-mRNA is subjected to		8.30	Lytic herpesvirus replication involves	
	alternative splicing	218		a cascade with several waves of gene	
8.16	Leaky scanning, internal ribosome			expression	234
	entry sites, and translation		8.31	Groups of herpes simplex virus 1	
	reinitiation lead to the expression			proteins have functions relating to the	225
	of papillomavirus proteins from	210		timing of their expression	235
	polycistronic mRNA	219	8.32	Waves of gene expression in herpesviruses	
8.17	DNA replication in papillomaviruses is linked to host cell differentiation status	220		are controlled by transcription activation and chromatin remodeling	236
0.40		220	0.22		230
8.18	Papillomaviruses use early proteins to manipulate the host cell cycle and		8.33	Herpesvirus genome replication results in concatamers	236
	apoptosis	221	0 24	Poxviruses are extremely large dsDNA	230
8.19	Comparing the small DNA viruses		8.34	viruses that replicate in the host	
0.15	reveals similar economy in coding			cytoplasm	237
	capacity but different mechanisms for		8.35	Many vaccinia virus proteins are	
	gene expression, manipulating the		9,77	associated with the virion itself	238
	host cell cycle, and DNA replication	222	8.36	Vaccinia RNA polymerase transcribes	
8.20	Adenoviruses are large dsDNA viruses			genes in three waves using different	
	with three waves of gene expression	223		transcription activators	239
8.21	Adenoviruses have large naked		8.37	Vaccinia genome replication requires	
	spherical capsids with prominent spikes and large linear dsDNA genomes	224		the unusual ends of the genome	242
0.22		224		sequence	242
8.22	Adenoviruses encode early, delayed- early, and late proteins	225	8.38	The synthetic demands on the host cell	
8.23	The large E1A protein is important for	223		make vaccinia a possible anticancer treatment	244
0.23	regulating the adenovirus cascade of		Eccon		244
	gene expression	226		tial concepts	245
8.24	Splicing of pre-mRNA was first		Ques		
	discovered through studying		Furtn	er reading	246
	adenovirus gene expression	226			
8.25	Both host cells and adenovirus rely on		9	GENE EXPRESSION AND	
	alternative splicing to encode multiple			GENOME REPLICATION IN	
		227		THE SINGLE-STRANDED	
8.26	Regulated alternative splicing of a				249
	late adenovirus transcript relies on cis-acting regulatory sequences, on				
	the E4-ORF4 viral protein, and on host		9.1	The ssDNA viruses express their genes and	250
	splicing machinery	228	0.2	replicate their genomes in the nucleus	230
			9.2	Circoviruses are tiny ssDNA viruses with circular genomes	250
				With the data general	250

9.3	Although their genomes are shorter than an average human gene, circoviruses encode at least four		10.9	The HIV-1 accessory protein Rev is essential for exporting some viral mRNA from the nucleus	274
9.4	proteins Both host and viral proteins are	251	10.10	Retrovirus genome replication is accomplished by host Pol II	274
	needed for circovirus genome replication	252	10.11	HIV-1 is a candidate gene therapy vector for diseases that involve the	
9.5	Parvoviruses are tiny ssDNA viruses with linear genomes having hairpins		10 12	immune cells normally targeted by HIV Hepadnaviruses are enveloped and	274
9.6	at both ends The model parvovirus MVM encodes	253		have genomes containing both DNA and RNA in an unusual arrangement	276
9.7	six proteins using alternative splicing The model parvovirus MVM uses a	253	10.13	Hepadnaviruses use reverse transcription to amplify their genomes	276
3.1	rolling-hairpin mechanism for genome replication	254	10.14	The cccDNA of HBV is not perfectly identical to the DNA in the infecting	ERIE
Essen	tial concepts	256		virion	277
Quest	ions	256	10.15	The tiny HBV genome encodes eight	
Furth	er reading	257		proteins through alternative splicing, overlapping coding sequences, and alternative start codons	278
10	GENE EXPRESSION AND		10.16	HBV genome replication relies upon	
	GENOME REPLICATION IN			an elaborate reverse transcriptase	
	THE RETROVIRUSES AND			mechanism	279
	HEPADNAVIRUSES	259		tial concepts	283
10.1	Viral reverse transcriptases have		Quest		284
10.2	polymerase and RNase H activity	262	Further reading		284
10.2	Retroviruses are enveloped and have RNA genomes yet express their		11	ASSEMBLY, RELEASE, AND	
	proteins from dsDNA	262	en E	MATURATION AND	287
10.3	Reverse transcription occurs during transport of the retroviral nucleic acid to the nucleus, through a		11.1	The last stages of the virus replication cycle are assembly, release, and maturation	288
10.4	discontinuous mechanism	264	11.2	Unlike cells, viruses assemble from	200
10.4	Retroviral integrase inserts the viral cDNA into a chromosome, forming		BOE	their constituent parts	288
	proviral DNA that can be transcribed	200	11.3	Virions more structurally complex than	
10.5	by host Pol II All retroviruses express eight essential	266		TMV also reproduce by assembly, not by division	290
	proteins, whereas some such as HIV		11.4	Typical sites of assembly in eukaryotic	
	encode species-specific accessory proteins	266		viruses include the cytoplasm, plasma membrane, and nucleus	291
10.6	The retroviral LTR sequences interact with host proteins to regulate		11.5	Eukaryotic virus assembly must take cellular protein localization into account	291
407	transcription	268	11.6	Capsids and nucleocapsids associate	
10.7	The compact retroviral genome is used economically to encode many proteins			with genomes using one of two general strategies	292
	through the use of polyproteins, alternative splicing, and translation of		11.7	Assembly of some viruses depends on DNA replication to provide the energy	
10.0	polycistronic mRNA	269		to fill the icosahedral heads	293
10.8	The HIV-1 accessory protein Tat is essential for viral gone expression	272			
	essential for viral gene expression	272			

Assembly of some viruses depends on a packaging motor to fill the icosahedral heads	294	12.6	Some viruses delay apoptosis in order to complete their replication cycles before the host cell dies	318
Negative RNA viruses provide a model for concerted nucleocapsid assembly	295	12.7	Some viruses subvert apoptosis in order to complete their replication	240
To assemble, some viruses require assistance from proteins not found in the virion	297	12.8	Cycles Viruses use the ubiquitin system to their advantage	319
Viruses acquire envelopes through one of two pathways	297	12.9	Viruses can block or subvert the cellular autophagy system	321
The helical vRNPs of influenza virus assemble first, followed by envelope acquisition at the plasma membrane	298	12.10	Viruses subvert or co-opt the misfolded protein response triggered in the endoplasmic reticulum	322
Coronaviruses assemble in the ER– Golgi intermediate compartment	299	12.11	in order to create virus replication	222
		003		322
	200			325
	300			325
membrane	300	Furth	er reading	326
provides a classic example of		13	PERSISTENT VIRAL INFECTIONS	329
structure-function research in pharmaceutical research	301	13.1	Some bacteriophages are temperate and can persist as genomes integrated	
Release from bacterial cells usually occurs by lysis	303	13.2	into their hosts' chromosomes	330
Release from animal cells can occur by lysis	305		latency	330
Release from animal cells can occur by budding	305	20.5	cell determines whether the phage	332
Release from animal cells can occur by exocytosis	307	13.4	Activation of P _{RE} , P _I , and P _{antiQ} by CII	332
Release from plant cells often occurs		13.5		335
through biting arthropods	308			
tial concepts	308	13.0		336
	309 309	13.7	Prophages affect the survival of their	336
		13.8	Persistent infections in humans include	
	311	42.0	and latent infections	338
		13.9		338
	312	13 10		
indirectly	312		latent infections	339
Animal viruses have many strategies to block translation of host mRNA	314		through persistent infections	341
Animal viruses cause structural		13.12		
changes in host cells referred to as cytopathic effects	316		and apoptosis	343
Viruses affect host cell apoptosis	316	13.13	HPV oncoproteins E6 and E7 cause transformation	343
	on a packaging motor to fill the icosahedral heads Negative RNA viruses provide a model for concerted nucleocapsid assembly To assemble, some viruses require assistance from proteins not found in the virion Viruses acquire envelopes through one of two pathways The helical vRNPs of influenza virus assemble first, followed by envelope acquisition at the plasma membrane Coronaviruses assemble in the ER—Golgi intermediate compartment Some viruses require maturation reactions during release in order to form infectious virions Assembly of HIV occurs at the plasma membrane Inhibition of HIV-1 maturation provides a classic example of structure—function research in pharmaceutical research Release from bacterial cells usually occurs by lysis Release from animal cells can occur by lysis Release from animal cells can occur by budding Release from animal cells can occur by exocytosis Release from plant cells often occurs through biting arthropods tial concepts tions er reading VIRUS—HOST INTERACTIONS DURING LYTIC GROWTH All viruses subvert translation Bacteriophages subvert translation indirectly Animal viruses have many strategies to block translation of host mRNA Animal viruses cause structural changes in host cells referred to as cytopathic effects	on a packaging motor to fill the icosahedral heads Negative RNA viruses provide a model for concerted nucleocapsid assembly To assemble, some viruses require assistance from proteins not found in the virion Viruses acquire envelopes through one of two pathways The helical vRNPs of influenza virus assemble first, followed by envelope acquisition at the plasma membrane Coronaviruses assemble in the ER—Golgi intermediate compartment Some viruses require maturation reactions during release in order to form infectious virions Assembly of HIV occurs at the plasma membrane Inhibition of HIV-1 maturation provides a classic example of structure—function research in pharmaceutical research Release from bacterial cells usually occurs by lysis Release from animal cells can occur by lysis Release from animal cells can occur by budding Release from animal cells can occur by exocytosis Release from plant cells often occurs through biting arthropods tial concepts ions er reading VIRUS—HOST INTERACTIONS DURING LYTIC GROWTH All viruses subvert translation indirectly Animal viruses have many strategies to block translation of host mRNA Animal viruses cause structural changes in host cells referred to as cytopathic effects 316	on a packaging motor to fill the icosahedral heads Negative RNA viruses provide a model for concerted nucleocapsid assembly To assemble, some viruses require assistance from proteins not found in the virion Viruses acquire envelopes through one of two pathways The helical vRNPs of influenza virus assemble first, followed by envelope acquisition at the plasma membrane Coronaviruses assemble in the ER-Golgi intermediate compartment Some viruses require maturation reactions during release in order to form infectious virions Assembly of HIV occurs at the plasma membrane Inhibition of HIV-1 maturation provides a classic example of structure-function research in pharmaceutical research Release from bacterial cells usually occurs by lysis Release from animal cells can occur by lysis Release from animal cells can occur by budding Release from animal cells can occur by exocytosis Release from plant cells often occurs through biting arthropods tial concepts ions or reading VIRUS-HOST INTERACTIONS DURING LYTIC GROWTH All viruses subvert translation indirectly Animal viruses have many strategies to block translation of host mRNA Animal viruses cause structural changes in host cells referred to as cytopathic effects 12.7 12.7 12.8 12.9 12.9 12.10 12.9 12.9 12.10 12.9 12.10 12.9 12.10 12.9 12.9 12.10 12.9 12.9 12.10 12.10	on a packaging motor to fill the icosahedral heads Negative RNA viruses provide a model for concerted nucleocapsid assembly To assemble, some viruses require assistance from proteins not found in the virion Viruse acquire envelopes through one of two pathways The helical vRNPs of influenza virus assemble first, followed by envelope acquisition at the plasma membrane Coronaviruses assemble in the ER-Golgi intermediate compartment Some viruses require maturation reactions during release in order to form infectious virions Assembly of HIV-1 maturation provides a classic example of structure-function research in pharmaceutical research Release from bacterial cells usually occurs by lysis Release from animal cells can occur by lysis Release from animal cells can occur by lysididing Release from plant cells often occurs through bitting arthropods are reading To complete their replication cycles before the host cell dies Some viruses subvert apoptosis in order to complete their replication cycles 12.9 Viruses use the ubiquitin system to their advantage Viruses can block or subvert the cellular autophagy system 12.9 Viruses can block or subvert the cellular autophagy system 12.9 Viruses can block or subvert the cellular autophagy system 12.9 Viruses subvert or co-opt the misfolded protein response triggered in the endoplasmic reticulum 12.9 Viruses subvert to complete their replication cycles 12.9 Viruses can block or subvert the cellular autophagy system 12.10 Viruses subvert or co-opt the misfolded protein response triggered in the endoplasmic reticulum 12.9 Viruses can block or subvert the cellular autophagy system 12.9 Viruses subvert or co-opt the misfolded protein response triggered in the endoplasmic reticulum 12.9 Viruses subvert or co-opt the misfolded protein response triggered in the endoplasmic reticulum 12.9 Viruses subvert to co-opt the cellular autophagy system 12.9 Viruses usbvert to road to read to compart the cellular autophagy system 12.9 Viruses usbvert to road

	HPV E6 and E7 overexpression occurs when the virus genome recombines with a host chromosome	344	14.12	In order to be recognized as healthy, all cells present endogenous antigens in MHC-I molecules	371
13.15	Merkel cell polyomavirus is also associated with human cancers	345	14.13	Cells infected by viruses produce and display viral antigens in MHC-I	372
13.16	Epstein-Barr virus is an oncogenic herpesvirus	345	14.14	Viruses have strategies to evade MHC-I presentation of viral antigens	372
13.17	Latency-associated viral proteins are responsible for Epstein-Barr virus-		14.15	Natural killer cells attack cells with reduced MHC-I display	373
13.18	induced oncogenesis The Kaposi's sarcoma herpesvirus also	346	14.16	The complement system targets enveloped viruses and cells infected	
	causes persistent oncogenic infections	347		by them	374
13.19	Hepatocellular carcinoma is caused by	2/10	14.17	Some viruses can evade the	274
	persistent lytic viral infections	348	11 10	complement system	374
13.20	Retroviruses have two mechanisms by which they can cause cancer	349	14.18	Viral evasion strategies depend on the coding capacity of the virus	374
42 24	Viral oncoproteins can be used to	343	1/1 10	In vertebrates, if an innate immune	3/4
13.21	immortalize primary cell cultures	352	14.19	reaction does not clear an infection,	
12 22	The human virome is largely			adaptive immunity comes into play	375
13.22	uncharacterized but likely has effects		Essent	ial concepts	375
	on human physiology	352	Questi		376
Essent	ial concepts	353		er reading	377
Questi	ons	354			
Furthe	r reading	355			
				VIRAL EVASION OF ADAPTIVE	
44	ALDAL ENTACIONI OF ININIATE			HOST DEFENSES	379
	VIRAL EVASION OF INNATE HOST DEFENSES	357	15.1	CRISPR-Cas is an adaptive immune response found in bacteria	380
14.1	Restriction enzymes are a component of innate immunity to bacteriophages	358	15.2	Some bacteriophages can evade or subvert the CRISPR-Cas system	384
14.2	Bacteriophages have counterdefenses against restriction-modification systems	361	15.3	The human adaptive immune response includes cell-mediated and humoral	
14.3	Human innate immune defenses			immunity	385
14.4	operate on many levels The human innate immune system is	361	15.4	The human adaptive immune response has specificity because it responds to	
	triggered by pattern recognition	361		epitopes	386
14.5	Viruses have counterdefenses against pattern recognition	362	15.5	Professional antigen-presenting cells degrade exogenous antigens and	
14.6	Innate immune responses include			display epitopes in MHC-II molecules	387
	cytokine secretion	363	15.6	Some viruses evade MHC-II presentation	388
14.7	Interferon causes the antiviral state	363	15.7	Lymphocytes that control viral	
14.8	Some viruses can evade the interferon response	366		infections have many properties in common	389
14.9	Neutrophils are active during an		15.8	CD4+ T helper lymphocytes interact	
	innate immune response against viruses	369		with viral epitopes displayed in MHC-II	200
14.10	Viruses manipulate immune system		1F.0	Molecules Antibodies are soluble B sell resenters	389
	communication to evade the NET response	370	15.9	Antibodies are soluble B-cell receptors that bind to extracellular antigens	202
14.11	Inflammation is the hallmark of an innate immune response	370		such as virions	392

15.10	During an antiviral response, B cells differentiate to produce higher-affinity antibodies	393	16.10	Many antiviral drugs are nucleoside or nucleotide structural analogs that target the active site of viral	
15.11	Viruses have strategies to evade or	204	16 11	polymerases Drugs to troot influence torget the	418
15.12	subvert the antibody response CD8+ cytotoxic T lymphocytes are crucial for controlling viral infections	394 395	10.11	Drugs to treat influenza target the uncoating and release stages of viral replication	419
15.13	Some viruses can evade the CTL response	396	16.12	Drugs to treat COVID-19 target the viral polymerase or one of the viral	420
15.14	Viruses that cause persistent infections evade immune clearance for a long	206	16.13	proteases Drugs to treat hepatitis C virus target the viral polymerase	420
15 15	period of time The immune response to influenza	396	16.14	Drugs to treat HIV target many stages	
15.15	serves as a comprehensive model for			of the virus replication cycle	421
	antiviral immune responses in general	398	16.15	Viral evolution occurs in response to	
15.16	Influenza provides a model for how			selective pressure from antiviral drugs	423
	a lytic virus evades both innate and adaptive immunity long enough		16.16	It might be possible to develop bacteriophage therapy to treat people	
	to replicate	400		with antibiotic-resistant bacterial	121
Essent	ial concepts	402	16 17	infections Engineered viruses sould in principle	424
Quest		402	16.17	Engineered viruses could in principle be used for gene therapy to treat	
Furthe	er reading	403		cancer and other conditions	425
			16.18	Gene therapy and oncolytic virus	
16	MEDICAL APPLICATIONS OF			treatments currently in use	428
	MOLECULAR AND CELLULAR		16.19	Therapeutic applications of CRISPR-Cas	
	VIROLOGY	405		technology	432
16.1	Vaccines are critical components of an			Antibodies to treat viral infections	433
10.1	effective public health system	406	Essen	tial concepts	433 434
16.2	Attenuated vaccines are highly		Questions		
	immunogenic because they can still replicate	407	Furth	er reading	435
16.3	Inactivated vaccines are composed of nonreplicating virions	408	17	VIRAL DIVERSITY, ORIGINS, AND EVOLUTION	437
16.4	Subunit vaccines are composed of	400	47.4		
46.5	selected antigenic proteins	409	17.1	The viral world is extremely diverse	438
16.5	Although seasonal influenza vaccines are useful, a universal flu vaccine is highly sought after	410	17.2	Satellite viruses and nucleic acids require co-infection with a virus to spread	439
16.6	Preventative HIV vaccines are in		17.3	Viroids are infectious RNA molecules	
10.0	development	412		found in plants	441
16.7	Extreme antigenic variation is a		17.4	Transposons and introns are subviral	
	problem for developing an HIV vaccine	414		entities	441
16.8	An effective HIV vaccine may require		17.5	Viruses have ancient origins	443
	stimulating a strong CTL response	415	17.6	Viral hallmark proteins can be used to	
16.9	Antiviral drugs target proteins unique			trace evolutionary history	444
	to viruses and essential for their replication cycle	415	17.7	Metagenomics is revolutionizing	446
	replication cycle		47.0	evolutionary understanding of viruses	440
			17.8	Viral genetic diversity arises through mutation and recombination	447

.

17.9	Genetic diversity among influenza A viruses arises through mutation and		17.19 Viruses and subviral common in the hum	
	recombination	448	17.20 Viruses and subviral	entities have
17.10	Influenza A spike proteins are particularly diverse	450	strongly affected the organisms including	
17.11	Variations among influenza A viruses		17.21 Virology unites the k	piosphere 466
	reflect genetic drift and natural	450	Essential concepts	466
	selection	450	Questions	467
17.12	Pandemic influenza A strains have arisen through recombination	451	Further reading	467
17.13	New pandemic influenza A strains may be able to arise through mutation	453	18 VIRUSES AND PU	RUCHEAITH
17.14	Selective pressures and constraints influence viral evolution	454	(available online	at
17.15	Some viruses and hosts coevolve	456	www.routledge.com/cw/los	
17.16	Medically dangerous emerging viruses are zoonotic	458	GLOSSARY	471
17.17	HIV exhibits high levels of genetic			7/ •
	diversity and transferred from apes to		ANSWERS	495
	humans on four occasions	462	INDEX	511
17.18	HIV-1 has molecular features that		r even though	
	reflect adaptation to humans	463		